Skip to main content
Log in

Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A tracking and recognizing algorithm is proposed to automatically generate irregular cross-sections and central path of braid yarn within the 3D braided composites by using sets of high resolution tomography images. Only the initial cross-sections of braid yarns in a tomography image after treatment are required to be calibrated manually as searching cross-section template. The virtual geometry of 3D braided composites including some detailed geometry information, such as the braid yarn squeezing deformation, braid yarn distortion and braid yarn path deviation etc., can be reconstructed. The reconstructed geometry model can reflect the change of braid configurations during solidification process. The geometry configurations and mechanical properties of the braided composites are analyzed by using the reconstructed geometry model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fang, G., Liang, J., Wang, Y., Wang, B.: The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites. Compos. A: Appl. Sci. Manuf. 40, 343–350 (2009)

    Article  Google Scholar 

  2. Wang, Y., Sun, X.: Digital-element simulation of textile processes. Compos. Sci. Technol. 61, 311–319 (2001)

    Article  Google Scholar 

  3. Wang, Y., Wang, A.: Geometric mapping of yarn structures due to shape change in 3-D braided composites. Compos. Sci. Technol. 54, 359–370 (1995)

    Article  Google Scholar 

  4. Ko, F.K.: Braiding[J]. In: ASM International, Engineered Materials Handbook, vol. 1: pp. 519-528 (1987)

  5. Byun, J.H., Chou, T.W.: Process micro-structure relationships of 2-step and 4-step braided composites[J]. Compos. Sci. Technol. 56(3), 235–251 (1996)

    Article  Google Scholar 

  6. Fang, G., Liang, J., Lu, Q., et al.: Investigation on the compressive properties of the three dimensional four-directional braided composites[J]. Compos. Struct. 93(2), 392–405 (2011)

    Article  Google Scholar 

  7. Xu, K., Xu, X.W.: Finite element analysis of mechanical properties of 3D five-directional braided composites[J]. Mater. Sci. Eng. A. 487(1), 499–509 (2008)

    Article  Google Scholar 

  8. Green, S.D., Matveev, M.Y., Long, A.C., et al.: Mechanical modelling of 3D woven composites considering realistic unit cell geometry[J]. Compos. Struct. 118, 284–293 (2014)

    Article  Google Scholar 

  9. El Said, B., Green, S., Hallett, S.R.: Kinematic modelling of 3D woven fabric deformation for structural scale features[J]. Compos. A: Appl. Sci. Manuf. 57, 95–107 (2014)

    Article  Google Scholar 

  10. El Said, B., Ivanov, D., Long, A.C., et al.: Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellation[J]. J Mech. Phys. Solids. 88, 50–71 (2016)

    Article  Google Scholar 

  11. Stock, S.R.: X-ray microtomography of materials[J]. Int. Mater. Rev. 44(4), 141–164 (1999)

    Article  Google Scholar 

  12. Ren, W., Yang, Z., Sharma, R., Zhang, C., Withers, P.J.: Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete. Eng. Fract. Mech. 133, 24–39 (2015)

    Article  Google Scholar 

  13. Huang, Y., Yang, Z., Ren, W., Liu, G., Zhang, C.: 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model. Int. J. Solids Struct. 67–68, 340–352 (2015)

    Article  Google Scholar 

  14. Djukic, L.P., Herszberg, I., Walsh, W.R., Schoeppner, G.A., Prusty, B.G.: Contrast enhancement in visualisation of woven composite architecture using a microCT scanner. Part 2: Tow and preform coatings. Compos. Part A. 40(12), 1870–1879 (2009)

    Article  Google Scholar 

  15. Sharma, R., Mahajan, P., Mittal, R.K.: Image-Based Finite Element Analysis of 3D–Orthogonal Carbon/Carbon Composite. Proceedings of the World Congress on Engineering, vol. II, WCE 2010, London (2010)

  16. Rinaldi, R.G., Blacklock, M., Bale, H., et al.: Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations[J]. J. Mech. Phys. Solids. 60(8), 1561–1581 (2012)

    Article  Google Scholar 

  17. Blacklock, M., Bale, H., Begley, M., et al.: Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the Binary Model[J]. J. Mech. Phys. Solids. 60(3), 451–470 (2012)

    Article  Google Scholar 

  18. Landi, G., Niezgoda, S.R., Kalidindi, S.R.: Multi-scale modeling of elastic response of three-dimensional voxel-based microstructure datasets using novel DFTbased knowledge systems. Acta Mater. 58(7), 2716–2725 (2010)

    Article  Google Scholar 

  19. Ya, J., Liu, Z., Wang, Y.: Micro-CT characterization on the meso-structure of three-dimensional full five-directional braided composite[J]. Appl. Compos. Mater. 1–18 (2016)

  20. Whitacre, W., Czabaj, M.: Extension of Automated 3D Digital Reconstruction to Multi-Directional Fiber Reinforced Composite Microstructures[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1233 (2016)

  21. Sencu, R.M., Yang, Z., Wang, Y.C., et al.: Generation of micro-scale finite element models from synchrotron X-ray CT images for multidirectional carbon fibre reinforced composites[J]. Compos. A: Appl. Sci. Manuf. 91, 85–95 (2016)

    Article  Google Scholar 

  22. Sevenois, R.D.B., Garoz, D., Gilabert, F.A., et al.: Avoiding interpenetrations and the importance of nesting in analytic geometry construction for Representative Unit Cells of woven composite laminates[J]. Compos. Sci. Technol. 136, 119–132 (2016)

    Article  Google Scholar 

  23. Yu, G.H., Xue, W., Zhou, Y.: A nonmonotone adaptive projected gradient method for primal-dualtotal variation image restoration. Signal Process. 103, 242–249 (2014)

    Article  Google Scholar 

  24. Sherburn, M.: Geometric and Mechanical Modelling of Textiles[D]. University of Nottingham (2007)

  25. Li, C., Tao, X.M., Choy, C.L.: On the microstructure of three-dimensional braided performs[J]. Compos. Sci. Technol. 59(3), 391–404 (1999)

    Article  Google Scholar 

  26. Xia, Z., Zhou, C., Yong, Q., et al.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. Int. J. Solids Struct. 43(2), 266–278 (2006)

    Article  Google Scholar 

  27. Fang, G., El Said, B., Ivanov, D., et al.: Smoothing artificial stress concentrations in voxel-based models of textile composites[J]. Composites Part A. 80, 270–284 (2016)

    Article  Google Scholar 

  28. Fang, G.: Progressive Damage and Failure Analysis of 3d Four-Step Carbon/Epoxy Braided Composites[D], Harbin Institute of Techonolgy, [In Chinese] (2009)

  29. Faes, J.C., Rezaei, A., Van Paepegem, W., et al.: Accuracy of 2D FE models for prediction of crack initiation in nested textile composites with inhomogeneous intra-yarn fiber volume fractions[J]. Compos. Struct. 140, 11–20 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11672089, 11325210 and 11421091); the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2017017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, G., Chen, C., Yuan, S. et al. Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites. Appl Compos Mater 25, 469–483 (2018). https://doi.org/10.1007/s10443-017-9630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9630-8

Keywords

Navigation