Skip to main content
Log in

Modeling Strength Degradation of Fiber-Reinforced Ceramic-Matrix Composites Subjected to Cyclic Loading at Elevated Temperatures in Oxidative Environments

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gonczy, S.T.: Federal Aviation Administration (FAA) airworthiness certification for ceramic matrix composite components in civil aircraft systems. MATEC Web of Conferences. 29, 00002 (2015). doi:10.1051/matecconf/20152900002

    Article  Google Scholar 

  2. Lee, S.S., Zawada, L.P., Staehler, J.M., Folsom, G.A.: Mechanical behavior and high-temperature performance of a woven Nicalon™/Si-N-C ceramic-matrix composite. J. Am. Ceram. Soc. 81, 1797–1811 (1998). doi:10.1111/j.1151-2916.1998.tb02550.x

    Article  Google Scholar 

  3. Bertrand, D.J., Sabelkin, V., Zawada, L., Mall, S.: Fatigue behavior of Sylramic-iBN/BN/CVI SiC ceramic matrix composite in combustion environment. J. Mater. Sci. 50, 7437–7447 (2015). doi:10.1007/s10853-015-9302-8

    Article  Google Scholar 

  4. Ruggles-Wrenn, M.B., Hetrick, G., Baek, S.S.: Effects of frequency and environment on fatigue behavior of an oxide-oxide ceramic composite at 1200°C. Int. J. Fatigue. 30, 502–516 (2008). doi:10.1016/j.ijfatigue.2007.04.004

    Article  Google Scholar 

  5. Mehrman, J.M., Ruggles-Wrenn, M.B., Baek, S.S.: Influence of hold times on the elevated-temperature fatigue behavior of an oxide-oxide ceramic composite in air and in steam environment. Compos. Sci. Technol. 67, 1425–1438 (2007). doi:10.1016/j.compscitech.2006.09.005

    Article  Google Scholar 

  6. Ruggles-Wrenn, M.B., Lanser, R.L.: Tension-compression fatigue of an oxide/oxide ceramic composite at elevated temperature. Mater. Sci. Eng. A. 659, 270–277 (2016). doi:10.1016/j.msea.2016.02.057

    Article  Google Scholar 

  7. Whitworth, H.A.: Evaluation of the residual strength degradation in composite laminates under fatigue loading. Compos. Struct. 48, 261–264 (2000). doi:10.1016/S0263-8223(99)00113-0

    Article  Google Scholar 

  8. Keiji, O.: Prediction of residual tensile strength after fatigue in unidirectional brittle fiber-reinforced ceramic composites. J. Solid Mech. Mater. Eng. 5, 64–74 (2011). doi:10.1299/jmmp.5.64

    Article  Google Scholar 

  9. Shah, A.R., Murthy, P.L.N., Mital, S.K., Bhatt, R.T.: Probabilistic modeling of ceramic matrix composite strength. J. Compos. Mater. 34, 670–688 (2000). doi:10.1177/002199830003400803

    Article  Google Scholar 

  10. Murthy, P.L.N., Nemeth, N.N., Brewer, D.N., Mital, S.: Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane. Composites Part B. 39, 694–703 (2008). doi:10.1016/j.compositesb.2007.05.006

    Article  Google Scholar 

  11. Li, L.B.: Modeling the tensile strength of carbon fiber-reinforced ceramic-matrix composites under multiple fatigue loading. Appl. Compos. Mater. 23, 313–336 (2016). doi:10.1007/s10443-015-9462-3

    Article  Google Scholar 

  12. Li, L.B.: Modeling the effect of oxidation on tensile strength of carbon fiber-reinforced ceramic-matrix composites. Appl. Compos. Mater. 22, 921–943 (2015). doi:10.1007/s10443-015-9443-6

    Article  Google Scholar 

  13. Holmes, J.W.: Influence of stress ratio on the elevated-temperature fatigue of a silicon carbide fiber-reinforced silicon nitride composite. J. Am. Ceram. Soc. 74, 1639–1645 (1991). doi:10.1111/j.1151-2916.1991.tb07152.x

    Article  Google Scholar 

  14. McNulty, J.C., Zok, F.W.: Low-cycle fatigue of Nicalon-fiber-reinforced ceramic composites. Compos. Sci. Technol. 59, 1597–1607 (1999). doi:10.1016/S0266-3538(99)00019-6

    Article  Google Scholar 

  15. Li, L.B.: Assessment of the interfacial properties from fatigue hysteresis loss energy in ceramic-matrix composites with different fiber preforms at room and elevated temperatures. Mater. Sci. Eng. A. 613, 17–36 (2014). doi:10.1016/j.msea.2014.06.092

    Article  Google Scholar 

  16. Fantozzi, G., Reynaud, P.: Mechanical behavior of SiC fiber-reinforced ceramic matrix composites. Comprehensive Hard Materials. 345–366 (2014). doi:10.1016/B978–0–08-096527-7.00031-3

  17. Ruggles-Wrenn, M.B., Lee, M.D.: Fatigue behavior of an advanced SiC/SiC ceramic composite with a self-healing matrix at 1300°C in air and in steam. Mater. Sci. Eng. A. 677, 438–445 (2016). doi:10.1016/j.msea.2016.09.076

    Article  Google Scholar 

  18. Li, L.B.: Damage development in fiber-reinforced ceramic-matrix composites under cyclic fatigue loading using hysteresis loops at room and elevated temperatures. Int. J. Fract. 199, 39–58 (2016). doi:10.1007/s10704-016-0085-y

    Article  Google Scholar 

Download references

Acknowledgements

The work reported here is supported by the Natural Science Fund of Jiangsu Province (Grant No. BK20140813), and the Fundamental Research Funds for the Central Universities (Grant No. NS2016070). The author thanks the anonymous reviewer and the editor for their valuable comments on an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Longbiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longbiao, L. Modeling Strength Degradation of Fiber-Reinforced Ceramic-Matrix Composites Subjected to Cyclic Loading at Elevated Temperatures in Oxidative Environments. Appl Compos Mater 25, 1–19 (2018). https://doi.org/10.1007/s10443-017-9609-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9609-5

Keywords

Navigation