Skip to main content
Log in

Multilevel Optimization Framework for Hierarchical Stiffened Shells Accelerated by Adaptive Equivalent Strategy

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huang, Q.Z., Ren, M.F., Chen, H.R.: Resin flow of an advanced grid-stiffened composite structure in the Co-curing process. Appl. Compos. Mater. 20(3), 303–314 (2013)

    Article  Google Scholar 

  2. Pietropaoli, E., Riccio, A.: Finite element analysis of the stability (buckling and post-buckling) of composite laminated structures: well established procedures and challenges. Appl. Compos. Mater. 19(1), 79–96 (2012)

    Article  Google Scholar 

  3. Zhang, T., Gu, W.: The secondary buckling and design criterion of composite laminated cylindrical shells. Appl. Compos. Mater. 19(3–4), 203–217 (2012)

    Google Scholar 

  4. Butler, R., Williams, F.W.: Optimum buckling design of compression panels using VICONOPT. Struct. Optim. 6(3), 160–165 (1993)

    Article  Google Scholar 

  5. Wang, B., Tian, K., Hao, P., Cai, Y.W., Li, Y.W., Sun, Y.: Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method. Compos. Struct. 132(11), 136–147 (2015)

    Article  Google Scholar 

  6. Quinn, D., Murphy, A., McEwan, W., Lemaitre, F.: Non-prismatic sub-stiffening for stiffened panel plates - stability behaviour and performance gains. Thin-Walled Struct. 48(6), 401–413 (2010)

    Article  Google Scholar 

  7. Houston, G., Quinn, D., Murphy, A., Bron, F.: Wing panel design with novel skin-buckling containment features. J. Aircr. 53(2), 416–426 (2015)

    Article  Google Scholar 

  8. Meng, F.M., Zhang, B., Zhao, Z., Xu, Y., Fan, H.L., Jin, F.N.: A novel all-composite blast-resistant door structure with hierarchical stiffeners. Compos. Struct. 148, 113–126 (2016)

    Article  Google Scholar 

  9. Wang, C., Xu, Y., Du, J.: Study on the thermal buckling and post-buckling of metallic sub-stiffening structure and its optimization. Mater. Struct. 59(6), 1–13 (2016)

    Google Scholar 

  10. Wang, B., Hao, P., Li, G., Zhang, J.X., Du, K.F., Tian, K., Wang, X.J., Tang, X.H.: Optimum design of hierarchical stiffened shells for low imperfection sensitivity. Acta Mech. Sin. 30(3), 391–402 (2013)

    Article  Google Scholar 

  11. Bisagni, C.: Numerical analysis and experimental correlation of composite shell buckling and post-buckling. Compos. Pt. B-Eng. 31(8), 655–667 (2000)

    Article  Google Scholar 

  12. Lanzi, L.: A numerical and experimental investigation on composite stiffened panels into post-buckling. Thin-Walled Struct. 42(12), 1645–1664 (2004)

    Article  Google Scholar 

  13. Kidane, S., Li, G., Helms, J., Pang, S.S., Wodesenbet, E.: Buckling load analysis of grid stiffened composite cylinders. Compos. Pt. B-Eng. 34(1), 1–9 (2003)

    Article  Google Scholar 

  14. Wodesenbet, E., Kidane, S., Pang, S.S.: Optimization for buckling loads of grid stiffened composite panels. Compos. Struct. 60(2), 159–169 (2003)

    Article  Google Scholar 

  15. Chen, H.J., Tsai, S.W.: Analysis and optimum design of composite grid structures. J. Compos. Mater. 30(4), 503–534 (1996)

    Article  Google Scholar 

  16. Ren, M.F., Li, T., Huang, Q.Z., Wang, B.: Numerical investigation into the buckling behavior of advanced grid stiffened composite cylindrical shell. J. Reinf. Plast. Compos. 33(16), 1508–1519 (2014)

    Article  Google Scholar 

  17. Song, J., Wen, W.D., Cui, H.T., Zhang, H.J., Xu, Y.: Finite element analysis of 2.5 D woven composites, part I: microstructure and 3D finite element model. Appl. Compos. Mater. 23(1), 29–44 (2016)

    Article  Google Scholar 

  18. Huang, C., Ren, M.F., Li, T., Chang, X., Cong, J., Lei, Y.J.: Trans-scale modeling framework for failure analysis of cryogenic composite tanks. Compos. Pt. B-Eng. 85, 41–49 (2016)

    Article  Google Scholar 

  19. Buannic, N., Cartraud, P., Quesnel, T.: Homogenization of corrugated core sandwich panels. Compos. Struct. 59(3), 299–312 (2003)

    Article  Google Scholar 

  20. Cheng, G.D., Cai, Y.W., Xu, L.: Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mech. Sin. 29(4), 550–556 (2013)

    Article  Google Scholar 

  21. Cai, Y.W., Xu, L., Cheng, G.D.: Novel numerical implementation of asymptotic homogenization method for periodic plate structures. Int. J. Solids Struct. 51(1), 284–292 (2014)

    Article  Google Scholar 

  22. Hao, P., Wang, B., Tian, K., Li, G., Du, K.F., Luan, Y.: Integrated optimization of hybrid-stiffness stiffened shells based on sub-panel elements. Thin-Walled Struct. 103, 171–182 (2016)

    Article  Google Scholar 

  23. Hao, P., Wang, B., Tian, K., Li, G., Du, K.F., Niu, F.: Efficient optimization of cylindrical stiffened shells with reinforced cutouts by curvilinear stiffeners. AIAA J. 54(4), 1350–1363 (2016)

    Article  Google Scholar 

  24. Wang, B., Tian, K., Hao, P., Zheng, Y.B., Ma, Y.L., Wang, J.B.: Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells. Compos. Struct. 152, 807–815 (2016)

    Article  Google Scholar 

  25. Yuan, C., Bergsma, O., Koussios, S., Zu, L., Beukers, A.: Optimization of sandwich composites fuselages under flight loads. Appl. Compos. Mater. 19(1), 47–64 (2012)

    Article  Google Scholar 

  26. Khani, A., Abdalla, M.M., Gürdal, Z.: Optimum tailoring of fibre-steered longitudinally stiffened cylinders. Compos. Struct. 122, 343–351 (2015)

    Article  Google Scholar 

  27. Wang, B., Hao, P., Li, G., Tian, K., Du, K.F., Wang, X.J., Zhang, X., Tang, X.H.: Two-stage size-layout optimization of axially compressed stiffened panels. Struct. Multidiscip. Optim. 50(2), 313–327 (2014)

    Article  Google Scholar 

  28. Hao, P., Wang, B., Li, G., Meng, Z., Tian, K., Tang, X.H.: Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method. Thin-Walled Struct. 82(9), 46–54 (2014)

    Article  Google Scholar 

  29. Hao, P., Wang, B., Li, G., Meng, Z., Wang, L.P.: Hybrid framework for reliability-based design optimization of imperfect stiffened shells. AIAA J. 53(10), 2878–2889 (2015)

    Article  Google Scholar 

  30. Vafaeesefat, A., Khani, A.: Head shape and winding angle optimization of composite pressure vessels based on a multi-level strategy. Appl. Compos. Mater. 14(5–6), 379–391 (2007)

    Article  Google Scholar 

  31. Cherniaev, A., Komarov, V.: Multistep optimization of composite drive shaft subject to strength, buckling, vibration and manufacturing constraints. Appl. Compos. Mater. 22(5), 440–447 (2015)

    Article  Google Scholar 

  32. Maes, V.K., Pavlov, L., Sahak, M.: An efficient semi-automated optimisation approach for (grid-stiffened) composite structures: Application to Ariane 6 Interstage. Compos. Struct. (2016)

  33. Sorrentino, L., Marchetti, M., Bellini, C., Delfini, A., Albano, M.: Design and manufacturing of an isogrid structure in composite material: Numerical and experimental results. Compos. Struct. 143, 189–201 (2016)

    Article  Google Scholar 

  34. Liu, W., Butler, R., Mileham, A.R., Green, A.J.: Bilevel optimization and postbuckling of highly strained composite stiffened panels. AIAA J. 44(11), 2562–2570 (2006)

    Article  Google Scholar 

  35. Dormohammadi, S., Rais-Rohani, M., Rouhi, M.: A multilevel approach for analysis and optimization of nano-enhanced composite structures. Compos. Struct. 131, 1050–1059 (2015)

    Article  Google Scholar 

  36. Shi, S.S., Sun, Z., Ren, M.F., Chen, H.R., Hu, X.Z.: Buckling resistance of grid-stiffened carbon-fiber thin-shell structures. Compos. Pt. B-Eng. 45(1), 888–896 (2013)

    Article  Google Scholar 

  37. Brown, N.F., Olds, J.R.: Evaluation of multidisciplinary optimization techniques applied to a reusable launch vehicle. J. Spacecr. Rocket. 43(6), 1289–1300 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China under Grant No.2014CB049000, National Natural Science Foundation of China under Grant No.11372062 and No.11402049, Project funded by China Postdoctoral Science Foundation under Grant No.2015 T80246, 111 Project under Grant No.B14013.

Particularly, Yanbing Zheng, Yan Zhou and Kaifan Du from Dalian University of Technology are much appreciated for their helpful comments and suggestions on the optimization framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Tian, K., Zhao, H. et al. Multilevel Optimization Framework for Hierarchical Stiffened Shells Accelerated by Adaptive Equivalent Strategy. Appl Compos Mater 24, 575–592 (2017). https://doi.org/10.1007/s10443-016-9527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9527-y

Keywords

Navigation