Skip to main content
Log in

The Theory of Chemical Symbiosis: A Margulian View for the Emergence of Biological Systems (Origin of Life)

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The theory of chemical symbiosis (TCS) suggests that biological systems started with the collaboration of two polymeric molecules existing in early Earth: nucleic acids and peptides. Chemical symbiosis emerged when RNA-like nucleic acid polymers happened to fold into 3D structures capable to bind amino acids together, forming a proto peptidyl-transferase center. This folding catalyzed the formation of quasi-random small peptides, some of them capable to bind this ribozyme structure back and starting to form an initial layer that would produce the larger subunit of the ribosome by accretion. TCS suggests that there is no chicken-and-egg problem into the emergence of biological systems as RNAs and peptides were of equal importance to the origin of life. Life has initially emerged when these two macromolecules started to interact in molecular symbiosis. Further, we suggest that life evolved into progenotes and cells due to the emergence of new layers of symbiosis. Mutualism is the strongest force in biology, capable to create novelties by emergent principles; on which the whole is bigger than the sum of the parts. TCS aims to apply the Margulian view of biology into the origins of life field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergh O, Børsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340(6233):467–8

    Article  Google Scholar 

  • Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD (2020) Root of the Tree: the significance, evolution, and origins of the ribosome. Chem Rev 120(11):4848–4878

    Article  Google Scholar 

  • Cafferty BJ, Hud NV (2015) Was a pyrimidine-pyrimidine base pair the ancestor of Watson‐Crick base pairs? Insights from a systematic approach to the origin of RNA. Isr J Chem 55:891–905

    Article  Google Scholar 

  • Collins LJ, Kurland CG, Biggs P, Penny D (2009) The modern RNP world of eukaryotes. J Hered 100(5):597–604

    Article  Google Scholar 

  • Dawkins R (1976) The Selfish Gene. Best Books

  • Enard D, Cai L, Gwennap C, Petrov DA (2016) Viruses are a dominant driver of protein adaptation in mammals. Elife 5:e12469. https://doi.org/10.7554/eLife.12469

    Article  Google Scholar 

  • Farias ST, Jheeta S, Prosdocimi F (2019) Viruses as survival strategy in the armoury of life. HPLS 41:45. https://doi.org/10.1007/s40656-019-0287-5

    Article  Google Scholar 

  • Farias ST, Prosdocimi F (2017) Buds of the tree: the highway to the last universal common ancestor. Int J Astrobio 16(2):105–113

    Article  Google Scholar 

  • Farias ST, Prosdocimi F (2019) A emergência dos sistemas biológicos: uma visão molecular da origem da vida. Ed. ArtecomCiencia, 1ed. 236 p. Rio de Janeiro, Brazil. ISBN 978-65-900624-1-3

  • Farias ST, Rêgo T, José MV (2014) Origin and evolution of the Peptidyl Transferase Center from proto-tRNAs. FEBS Open Bio 4:175–178

    Article  Google Scholar 

  • Forsythe JG, Yu SS, Mamajanov I et al (2015) Ester-Mediated amide bond formation driven by wet-dry cycles: a possible path to polypeptides on the Prebiotic Earth. Angew Chem Int Ed Engl 54(34):9871–9875. https://doi.org/10.1002/anie.201503792

    Article  Google Scholar 

  • Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117(1):5–16

    Article  Google Scholar 

  • Gilbert W (1986) Origin of life: The RNA World. Nature 319:618

    Article  Google Scholar 

  • Granold M, Hajieva P, Toşa MI, Irimie FD, Moosmann B (2018) Modern diversification of the amino acid repertoire driven by oxygen. Proc Natl Acad Sci USA 115(1):41–46. https://doi.org/10.1073/pnas.1717100115

    Article  Google Scholar 

  • Greenwald J, Friedmann MP, Riek R (2016) Amyloid aggregates arise from amino acid condensations under prebiotic conditions. Angew Chem Int Ed Engl 55(38):11609–11613. https://doi.org/10.1002/anie.201605321

    Article  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(3):849–57

    Article  Google Scholar 

  • Harris JR (1991) The evolution of placental mammals. FEBS Lett 295:3–4

    Article  Google Scholar 

  • Iebba V, Totino V, Gagliardi A, Santangelo F, Cacciotti F, Trancassini M, Mancini C, Cicerone C, Corazziari E, Pantanella F, Schippa S (2016) Eubiosis and dysbiosis: the two sides of the microbiota. New Microbiol 39(1):1–12

    Google Scholar 

  • Jørgensen CK (1971) Inorg Chem 10:1097

    Article  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31(1):147–157

    Article  Google Scholar 

  • Lanier KA, Petrov AS, Williams LD (2017) The central symbiosis of molecular biology: molecules in mutualism. J Mol Evol 85(1–2):8–13. https://doi.org/10.1007/s00239-017-9804-x (Epub 2017 Aug 7)

    Article  Google Scholar 

  • Lovelock JE, Margulis L (1974) Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26(1–2):2–10. doi:https://doi.org/10.1111/j.2153-3490.1974.tb01946.x

    Article  Google Scholar 

  • Margulis L (1998) Symbiotic Planet: A New Look at Evolution. Basic Books. ISBN 0-465-07271-2

  • Matera AG (2015) Twenty years of RNA: reflections from the RNP world. RNA 21(4):690–691

    Article  Google Scholar 

  • Middelboe M, Brussaard CPD (2017) Marine viruses: key players in marine ecosystems. Viruses 9(10):302. https://doi.org/10.3390/v9100302

    Article  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science May 15(3046):528–529 117(. PubMed PMID: 13056598

    Article  Google Scholar 

  • Palacios-Pérez M, José MV (2019) The evolution of proteome: From the primeval to the very dawn of LUCA. Biosystems 181:1–10

    Article  Google Scholar 

  • Popper K (1978) Three worlds. The Tanner Lecture on Human Values. University of Michigan. April 7, https://tannerlectures.utah.edu_documents/a-to-z/p/popper80.pdf

  • Prosdocimi F. Quando a química vira biologia: o último ancestral comum, uma origem progenota para os vírus e a vida pré-celular. In: Concepçoes do último ancestral comum (LUCA) na era pós-genômica. 61º Congresso Brasileiro de Genética, Hotel Monte Real Resort. 2015, 8–11 de Setembro, Águas de Lindoia-SP, Brasil

  • Prosdocimi F. The chemical symbiotic theory for the origin of life: a bottom-up perspective for the Last Universal Common Ancestor. In: The concept of the Last Universal Common Ancestor (LUCA) in modern Biology. ALAG 2016, XVI Congreso Latinoamericano de Genetica. Hotel Radisson Montevideo, 9–12 de Octubre, Montevideo, Uruguay

  • Prosdocimi F. La simbiosis química durante la organizacion del sistema biologico primitivo. In: Origen y evolución temprana de la vida: nuevas hipótesis y conceptos. 50o Reunión Anual de la Sociedad de Genetica de Chile y XI Reunión annual de la Sociedad Chilena de Evolución. Hotel Bellavista. 2017; 9–11 de Noviembre, Puerto Varas, Chile

  • Prosdocimi F, Jheeta S, de Farias S (2018) Conceptual challenges for the emergence of the biological system: cell theory and self-replication. Med Hypoth 119:79–83. https://doi.org/10.1016/j.mehy.2018.07.029

    Article  Google Scholar 

  • Prosdocimi F, José M, Farias S (2019) The First Universal Common Ancestor (FUCA) as the Earliest Ancestor of LUCA’s (Last UCA) Lineage. In: Evolution, Origin of Life, Concepts and Methods. Pierre Pontarotti (Editor). Springer. ISBN 978-3-030-30362-4. Chapter 3, pg 43–54

  • Pu F, Ren J, Qu X (2018) Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chem Soc Rev 47(4):1285–1306

    Article  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14(3):225–274

    Article  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164(3):337–340. https://doi.org/10.1016/j.cell.2016.01.013

    Article  Google Scholar 

  • Schwartz R, Dayhoff M (1978) Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199(4327):395–403

    Article  Google Scholar 

  • Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJG (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521(7551):173–179. https://doi.org/10.1038/nature14447

    Article  Google Scholar 

  • Sosa D, Miramontes P, Li W, Mireles V, Bobadilla JR, José MV (2013) Periodic distribution of a putative nucleosome positioning motif in human, nonhuman primates, and archaea: mutual information analysis. Int J Genomics 2013:963956. https://doi.org/10.1155/2013/963956 (Epub 2013 Jun 10)

    Article  Google Scholar 

  • Teresi D. Discover Interview: Lynn Margulis Says She’s Not Controversial, She’s Right. Discover Magazine. 2011.

  • Vitas M, Dobovišek A (2018) In the beginning was a Mutualism - on the origin of translation. Orig Life Evol Biosph 48(2):223–243. https://doi.org/10.1007/s11084-018-9557-6

    Article  Google Scholar 

  • Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1(9):16116. https://doi.org/10.1038/nmicrobiol.2016.116

    Article  Google Scholar 

  • Woese C (1998) The universal ancestor. Proc Natl Acad Sci USA 95(12):6854–9

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank FAPERJ (CNE E-26/202.780/2018) and CNPq (PDE 205072/2018-6) for funding FP. MVJ was financially supported by Dirección General de Asuntos del Personal Académico (DGAPA), Universidad Nacional Autónoma de México, PAPIIT-IN201019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco Prosdocimi or Sávio Torres de Farias.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prosdocimi, F., José, M.V. & de Farias, S.T. The Theory of Chemical Symbiosis: A Margulian View for the Emergence of Biological Systems (Origin of Life). Acta Biotheor 69, 67–78 (2021). https://doi.org/10.1007/s10441-020-09388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-020-09388-7

Keywords

Navigation