Skip to main content
Log in

Fractured Symmetries: Information and Control Theory Perspectives on Mitochondrial Dysfunction

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

...[E]stimation of mutual information and channel capacity [of cellular signals] from experimental data is a nontrivial challenge.

— Suderman et al. (2017)

Abstract

Mitochondrial dysfunction underlies a vast array of chronic disorders across the life span. The asymptotic limit theorems of information and control theories, supplemented by symmetry-breaking phase transition arguments adapted from physical theory, give deep insight into canonical mechanisms of cognition and regulation associated with such dysfunction. The probability models studied here can provide a foundation for the development of statistical tools useful in clinical and public health address of those disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Appleby J, Mao X, Rodkina A (2008) Stabilization and destabilization of nonlinear differential equations by noise. IEEE Trans Autom Control 53:126–132

    Article  Google Scholar 

  • Atlan H, Cohen I (1998) Immune information, self-organization, and meaning. Int Immunol 10:711–717

    Article  Google Scholar 

  • Bazil JN, Buzzard GT, Rundell AE (2020) Modeling mitochondrial bioenergetics with integrated volume dynamics. PLoS Comput Biol 6:e1000632

    Article  Google Scholar 

  • Boyd S (2004) Convex optimization. Cambridge University Press, New York

    Book  Google Scholar 

  • Brah F, Zaidi A, Louveaux J, Vandendorpe L (2011) On the Lambert-W function for constrained resource allocation in cooperative networks. EURASIP J Wirel Commun Netw. https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/1687-1499-2011-19

  • Brown R (1992) Out of line. R Inst Proc 64:207–243

    Google Scholar 

  • Casas-Vazquez J, Jou D (2003) Temperature in non-equilibrium states: a review of open problems and current proposals. Rep Progr Phys 66:1937–2023

    Article  Google Scholar 

  • Cayron C (2006) Groupoid of orientational variants. Acta Crystalogr Sect A A62:21040

    Google Scholar 

  • Champagnat N, Ferriere R, Meleard S (2006) Unifying evolutionary dynamics: from individual stochastic process to macroscopic models. Theor Popu Biol 69:297–321

    Article  Google Scholar 

  • Cover T, Thomas J (2006) Elements of information theory, 2nd edn. Wiley, New York

    Google Scholar 

  • de Groot S, Mazur P (1984) Nonequilibrium thermodynamics. Dover, New York

    Google Scholar 

  • Dembo A, Zeitouni O (1998) Large deviations and applications, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Feynman R (2000) Lectures on computation. Westview Press, New York

    Google Scholar 

  • Golubitsky M, Stewart I (2006) Nonlinear dynamics and networks: the groupoid formalism. Bull Am Math Soc 43:305–364

    Article  Google Scholar 

  • Gould S, Lewontin R (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B 205:581–98

    Article  Google Scholar 

  • Jin H, Xu Z, Zhou X (2008) A convex stochastic optimization problem arising from portfolio selection. Math Finan 18:171–183

    Article  Google Scholar 

  • Khinchin A (1957) Mathematical foundations of information theory. Dover Publications, New York

    Google Scholar 

  • Laidler K (1987) Chemical kinetics, 3rd edn. Harper and Row, New York

    Google Scholar 

  • Maturana HR, Varela F (1980) Autopoiesis and cognition: the realization of the living. Reidel, Dordrecht

    Book  Google Scholar 

  • Nair G, Fagnani F, Zampieri S, Evans R (2007) Feedback control under data rate constraints: an overview. Proc IEEEE 95:108–137

    Article  Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, New York

    Google Scholar 

  • Pettini M (2007) Geometry and topology in Hamiltonian dynamics and statistical mechanics. Springer, New York

    Book  Google Scholar 

  • Picard M (2015) Mitochondrial synapses: intracellular communication and signal integration. Trends Neurosci 38:468–474

    Article  Google Scholar 

  • Picard M, McEwen B (2018) Psychosocial stress and mitochondria: a conceptual framework. Psychosom Med 80:126–140

    Article  Google Scholar 

  • Picard M, McEwan B, Epel E, Sandi C (2018) An energetic view of stress: focus on mitochondria. Front Neuroendocrinol 49:72–85

    Article  Google Scholar 

  • Picard M, Trumpff C, Burelle Y (2019) Mitochondrial psychobiology: foundations and applications. Curr Opin Behav Sci 28:142–151

    Article  Google Scholar 

  • Pielou EC (1977) Mathematical ecology. Wiley, New York

    Google Scholar 

  • Protter P (2005) Stochastic integration and differential equations: a new approach, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Sonnino G, Evslin J, Sonnino A, Steinbrecher G, Tirapegui E (2016) Symmetry group and group representations associated with the thermodynamic covariance principle. Phys Rev E 94:042103

    Article  Google Scholar 

  • Stewart I (2017) Spontaneous symmetry-breaking in a newtwok model for quadruped locomotion. Int J Bifurcat Chaos 27(14):1730049

    Article  Google Scholar 

  • Suderman R, Bachman J, Smith A, Sorger P, Deeds E (2017) Fundamental trade-offs between information flow in single cells and cellular populations. Proc Natl Acad Sci 114:5755–5760

    Article  Google Scholar 

  • Sukhorukov V, Dikov D, Reichert A, Meyer-Hermann M (2012) Emergence of the mitochondrial reticulum from fission and fusion dynamics. PLOS Comput Biol 8(10):e1002745. https://doi.org/10.1371/journal.pcbi.1002745

    Article  Google Scholar 

  • Sukhorukov V, Meyer-Hermann M (2015) Structural heterogeniety of mitochondria induced by the microtubule cytoskeleton. Sci Rep 5:13924. https://doi.org/10.1038/srep13924

    Article  Google Scholar 

  • Vo TD, Lee WP, Palsson BO (2007) Systems analysis of energy metabolism elucidates the affected respiratory chain complex in Leigh’s syndrome. Mol Genet Metab 91:15–22

    Article  Google Scholar 

  • Wallace R (2005) Consciousness: a mathematical treatment of the global neuronal workspace model. Springer, New York

    Google Scholar 

  • Wallace R (2012a) Consciousness, crosstalk, and the mereological fallacy: an evolutionary perspective. Phys Life Rev 9:426–453

    Article  Google Scholar 

  • Wallace R (2012b) Extending Tlusty’s rate distortion index theorem method to the glycome: Do even ‘low level’ biochemical phenomena require sophisticated cognitive paradigms? BioSystems 107:145–152

    Article  Google Scholar 

  • Walace R (2015) An information approach to mitochondrial dysfunction: extending Swerdlow’s hypothesis. World Scientific, Singapore

    Book  Google Scholar 

  • Wallace R (2017) Computational psychiatry: a systems biology approach to the epigenetics of mental disorders. Springer, New York

    Book  Google Scholar 

  • Wallace R (2018a) Culture and the trajectories of developmental pathology: insights from control and information theories. Acta Biotheor 66:79–112

    Article  Google Scholar 

  • Wallace R (2018b) New statistical models of nonergodic cognitive systems and their pathologies. J Theor Biol 436:72–78

    Article  Google Scholar 

  • Wallace R (2020a) On the variety of cognitive temperatures and their symmetry-breaking dynamics. Acta Biotheor. https://doi.org/10.1007/s10441-019-09375-7

    Article  Google Scholar 

  • Wallace R (2020b) Cognitive dynamics on Clausewitz landscapes: the control and directed evolution of organized conflict. Springer, New York

    Book  Google Scholar 

  • Weinstein A (1996) Groupoids: unifying internal and external symmetry. Notices Am Math Assoc 43:744–752

    Google Scholar 

  • Wu F, Yang F, Vinnakota KC, Beard DA (2007) Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology. J Biol Chem 282:24525–24537

    Article  Google Scholar 

  • Zamponi N, Zamponi E, Cannas S, Billoni O, Helguera P, Chialvo D (2018) Mitochondrial network complexity emerges from fission/fusion dynamics. Sci Rep 8:363. https://doi.org/10.1038/s41598-017-18351-5

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. D.N. Wallace—an actual biologist—for useful comments and suggestions, and the editor and reviewers for perceptive insights and hard work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrick Wallace.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallace, R. Fractured Symmetries: Information and Control Theory Perspectives on Mitochondrial Dysfunction. Acta Biotheor 69, 277–301 (2021). https://doi.org/10.1007/s10441-020-09387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-020-09387-8

Keywords

Navigation