Skip to main content
Log in

Discrete Mesh Approach in Morphogenesis Modelling: the Example of Gastrulation

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Morphogenesis is a general concept in biology including all the processes which generate tissue shapes and cellular organizations in a living organism. Many hybrid formalizations (i.e., with both discrete and continuous parts) have been proposed for modelling morphogenesis in embryonic or adult animals, like gastrulation. We propose first to study the ventral furrow invagination as the initial step of gastrulation, early stage of embryogenesis. We focus on the study of the connection between the apical constriction of the ventral cells and the initiation of the invagination. For that, we have created a 3D biomechanical model of the embryo of the Drosophila melanogaster based on the finite element method. Each cell is modelled by an elastic hexahedron contour and is firmly attached to its neighbouring cells. A uniform initial distribution of elastic and contractile forces is applied to cells along the model. Numerical simulations show that invagination starts at ventral curved extremities of the embryo and then propagates to the ventral medial layer. Then, this observation already made in some experiments can be attributed uniquely to the specific shape of the embryo and we provide mechanical evidence to support it. Results of the simulations of the “pill-shaped” geometry of the Drosophila melanogaster embryo are compared with those of a spherical geometry corresponding to the Xenopus lævis embryo. Eventually, we propose to study the influence of cell proliferation on the end of the process of invagination represented by the closure of the ventral furrow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allard J, Cotin S, Faure F, Bensoussan P, Poyer F, Duriez C, Delingette H, Grisoni L (2007) Sofa—an open source framework for medical simulation. In: Westwood JD, Haluck RS, Hoffman HM, Mogel GT, Phillips R, Robb RA, Vosburgh KG (eds) 15th medicine meets virtual reality. IOP Press, Bristol, pp 13–18

  • Bidhendi A, Korhonen R (2012) A finite element study of micropipette aspiration of single cells: effect of compressibility. Comput Math Methods Med. doi:10.1155/2012/192618

    Google Scholar 

  • Blackiston DJ, McLaughlin KA, Levin M (2009) Bioelectric controls of cell proliferation. Cell Cycle 8:3519–3528

    Article  Google Scholar 

  • Bownes M (1975) A photographic study of development in the living embryo of Drosophila melanogaster. J Embryol Exp Morphol 33:789–801

    Google Scholar 

  • Brodland G, Conte V, Cranston P, Veldhuis J, Narasimhan S, Hutson M, Jacinto A, Ulrich F, Baum B, Miodownik M (2010) Video force microscopy reveals the mechanics of ventral furrow invagination in drosophila. Proc Natl Acad Sci 107:22111–22116. doi:10.1073/pnas.1006591107

    Article  Google Scholar 

  • Conte V, Munoz J, Miodownik M (2007) A 3D finite element model of ventral furrow invagination in the Drosophila melanogaster embryo. J Mech Behav Biomed Mater 1:188–198

    Article  Google Scholar 

  • Cui C, Yang X, Chuai M, Glazier JA, Weijer CJ (2005) Analysis of tissue flow patterns during primitive streak formation in the chick embryo. Dev Biol 284:37–47

    Article  Google Scholar 

  • Davidson L, Oster G, Keller R, Koehl M (1999) Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev Biol 209:221–238. doi:10.1006/dbio.1999.9249

    Article  Google Scholar 

  • Dawes-Hoang R, Parmar K, Christiansen A, Phelps C, Brand A, Wieschaus E (2005) Folded gastrulation, cell shape change and the control of myosin localization. Development 132:4165–4178. doi:10.1242/dev.01938

    Article  Google Scholar 

  • Faure F, Allard J, Cotin S, Neumann P, Bensoussan P, Duriez C, Delingette H, Grisoni L (2007) Sofa: a modular yet efficient simulation framework. In: Surgetica. (ed) Computer-aided medical interventions: tools and applications. Sauramps Médical, Paris

  • Forest L, Demongeot J (2008) A general formalism for tissue morphogenesis based on cellular dynamics and control system interactions. Acta Biotheor 56:51–74. doi:10.1007/s10441-008-9030-4

    Article  Google Scholar 

  • Forgacs G, Newman S (2005) Biological physics of the developing embryo. Cambridge University Press, Cambridge. doi:10.2277/0521783372

    Book  Google Scholar 

  • Fouard C, Deram A, Keraval Y, Promayon E (2012) CamiTK: a modular framework integrating visualization, image processing and biomechanical modelling. In: Payan Y (ed) Studies in mechanobiology, tissue engineering and biomaterials, vol 11. Springer, Berlin, pp 323–354

  • Galle J, Loeffler M, Drasdo D (2005) Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophys J 88:62–75

    Article  Google Scholar 

  • Gjorevski N, Nelson CM (2010) The mechanics of development: models and methods for tissue morphogenesis. Birth Defects Res C Embryo Today 90:193–202

    Article  Google Scholar 

  • Gumbiner B (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634. doi:10.1038/nrm1699

    Article  Google Scholar 

  • Hardin J, Keller R (1988) The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103:211–230

    Google Scholar 

  • Karr T, Alberts B (1986) Organization of the cytoskeleton in early drosophila embryos. J Cell Biol 102:1494–1509. doi:10.1083/jcb.102.4.1494

    Article  Google Scholar 

  • Leptin M (1999) Gastrulation in drosophila: the logic and the cellular mechanisms. EMBO J 18:3187–3192. doi:10.1093/emboj/18.12.3187

    Article  Google Scholar 

  • Leptin M, Grunewald B (1990) Cell shape changes during gastrulation in drosophila. Development 110:73–84

    Google Scholar 

  • Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137:1407–1420

    Article  Google Scholar 

  • Maniotis A, Chen C, Ingber D (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci 94:849–854

    Article  Google Scholar 

  • Martin A, Kaschube M, Wieschaus E (2008) Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457:495–499. doi:10.1038/nature07522

    Article  Google Scholar 

  • Martin A, Gelbart M, Fernandez-Gonzalez R, Kaschube M, Wieschaus E (2010) Integration of contractile forces during tissue invagination. J Cell Biol 188:735–749. doi:10.1083/jcb.200910099

    Article  Google Scholar 

  • Millard TH, Martin P (2008) Dynamic analysis of filopodial interactions during the zippering phase of Drosophila dorsal closure. Development 135:621–626

    Article  Google Scholar 

  • Miyoshi J, Takai Y (2008) Structural and functional associations of apical junctions with cytoskeleton. Biochim Biophys Acta (BBA) Biomembranes 1778:670–691. doi:10.1016/j.bbamem.2007.12.014

    Article  Google Scholar 

  • Navis A, Bagnat M (2015) Developing pressures: fluid forces driving morphogenesis. Curr Opin Genet Dev 32:24–30

    Article  Google Scholar 

  • Nesme M, Marchal M, Promayon E, Chabanas M, Payan Y, Faure F (2005) Physically realistic interactive simulation for biological soft tissues. Recent Res Dev Biomech 2:1–22

    Google Scholar 

  • Oda H, Tsukita S (2000) Real-time imaging of cell-cell adherens junctions reveals that drosophila mesoderm invagination begins with two phases of apical constriction of cells. J Cell Sci 114:493–501

    Google Scholar 

  • Royou A, Field C, Sisson J, Sullivan W, Karess R (2004) Reassessing the role and dynamics of non-muscle myosin ii during furrow formation in early drosophila embryos. Mol Biol Cell 15:838–850. doi:10.1091/mbc.E03-06-0440

    Article  Google Scholar 

  • Schejter E, Wieschaus E (1993) Functional elements of the cytoskeleton in the early drosophila embryo. Annu Rev Cell Biol 9:67–99. doi:10.1146/annurev.cb.09.110193.000435

    Article  Google Scholar 

  • Stephanou A, Tracqui P (2002) Cytomechanics of cell deformations and migration: from models to experiments. C R Biol 325:295–308

    Article  Google Scholar 

  • Sweeton D, Parks S, Costa M, Wieschaus E (1991) Gastrulation in drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 112:775–789

    Google Scholar 

  • Tepass U, Hartenstein V (1994) The development of cellular junctions in the drosophila embryo. Dev Biol 161:563–596

    Article  Google Scholar 

  • Tracqui P (2006) Mechanical instabilities as a central issue for in silico analysis of cell dynamics. Proc IEEE Soc 94:710–724

    Article  Google Scholar 

  • Tracqui P, Mendjeli M (1999) Modelling 3-dimensional growth of brain tumours from time series of scans. Math Models Methods Appl Sci 9:581–598

    Article  Google Scholar 

  • Tracqui P, Cruywagen GC, Woodward DE, Bartoo GT, Murray JD, Alvord EC Jr (1995) A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif 28:17–31

    Article  Google Scholar 

  • Tracqui P, Namy P, Ohayon J (2005) Cellular networks morphogenesis induced by mechanically stressed microenvironments. J Biol Phys Chem 5:57–69

    Article  Google Scholar 

  • Tranqui L, Tracqui P (2000) Mechanical signaling and angiogenesis: the integration of cell—extracellular matrix couplings. C R Acad Sci Sér III 322:1–17

    Google Scholar 

  • Vailhe B, Ronot X, Tracqui P, Usson Y, Tranqui L (1997) In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to αvβ3 integrin localization. Vitro Cell Dev Biol Animal 33:763–773

    Article  Google Scholar 

  • Wang X, Devarajan V (2005) 1D and 2D structured mass-spring models with preload. Visual Comput 21:429–448. doi:10.1007/s00371-005-0303-5

    Article  Google Scholar 

  • Woodward DE, Cook J, Tracqui P, Cruywagen GC, Murray JD, Alvord EC Jr (1996) A mathematical model of glioma growth: the effect of extent of surgical resection. Cell Prolif 29:269–288. doi:10.1111/j.1365-2184.1996.tb01580.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank VHP NoE (EC) and MEC grant from CONICYT (Chile) for financially aiding our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Demongeot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1790 kb)

Annex: P. Tracqui’s Obituary

Annex: P. Tracqui’s Obituary

P. Tracqui died in 2015 leaving the French community of Theoretical Biology very sad and orphan. Philip left a very important work covering many fields of modelling in biomedicine: osteogenesis, wound healing, cell movement, tissue morphogenesis, carcinogenesis, with many seminal articles. He published a total of 40 articles in international journals of high level cited as reference works [cf. for example (Tracqui et al. 1995; Tracqui and Mendjeli 1999; Tracqui 2006; Tracqui et al. 2005; Tranqui and Tracqui 2000; Vailhe et al. 1997; Woodward et al. 1996)], usually with prominent co-authors. His students, his friends, his colleagues in Paris and Grenoble, in the Dynacell team of the laboratory TIMC-IMAG he founded and he directed with great science and humanity, will infinitely regret him.

figure a

P. Tracqui in 2014

Eventually, the authors of the present paper, friends of Philippe, recall some words in French pronounced by Philippe’s spouse Valérie at the funerals (with her permission):

1.1 Philippe, toi le CHERCHEUR qui a marché ta Vie sur de multiples chemins…

Tu es né à Modane en 1956, dans une famille venant de Bessans, au fond de la vallée de la Maurienne. Tu étais un Être aux multiples talents, doué d’une grande intelligence et d’une formidable mémoire, ton exigence était à la hauteur de ton « commandeur » intérieur.

1.2 Tes passions?

La photographie

Très tôt, ton regard fin a eu envie de photographier les instants d’éternité, les couleurs, les paysages de nature, les ambiances, les visages et tu as ainsi capté des milliers d’images, pour qu’elles restent pour toujours gravées en toi. Et pourquoi choisir un appareil photo plutôt qu’un autre? Tu préférais les posséder tous, avec tous les objectifs qui allaient avec, histoire de garder tous les possibles…

La musique et les sons

Tu avais une oreille hors du commun, capable de repérer la moindre dissonance et de faire des réglages infinis pour améliorer la qualité des sons. Et ce fut une vraie joie quand à la fin de ta vie, tu révélais ta voix, si chaleureuse et juste, aussi bien sur tes poèmes que pour faire des sons. Tu jouais du piano, de la guitare, un peu de basse, des percussions… et possédais un labo d’enregistrement digne d’un professionnel…

Le sport

Pour maintenir ton corps actif et surtout ne pas vieillir, ta hantise ! Marcher vite, pédaler dur, courir longtemps… l’exigence est toujours là!

La recherche scientifique

Chercheur, tu étais très apprécié de tes collaborateurs. Capable à la fois d’une vision large et d’une détermination à aller dans les détails, tu allais chercher derrière les phénomènes de surface leurs processus et leurs causes. Tous les sujets t’intéressaient et tu menais tout de front: l’ordre et le chaos, la cicatrisation et… les mécanismes du cancer. Très reconnu dans le monde scientifique, tu as reçu en 1998 un prix de l’Académie des Sciences.

En tout, tu préférais la diversité, peut être par peur de manquer quelque chose?

Homme aux multiples talents, grand poète, musicien, peintre, photographe et sportif, tu marchais sur toutes les routes à la fois, au risque de t’épuiser et de ne pas te trouver. Ce cancer qui a touché tes os, c’est-à-dire la structure de qui tu croyais être (et que tu as tant étudiée au début de ta carrière de chercheur), fut terrible physiquement, mais ce fut une métamorphose pour ton éveil de conscience: tu as découvert le pouvoir de tes pensées sur le corps et le monde des illusions. Tu te réjouissais de témoigner de ton expérience au monde scientifique, mais, tu n’en as pas eu le temps, car la guérison ne touche pas forcément le corps physique, quand elle se dévoile à l’Esprit…

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demongeot, J., Lontos, A. & Promayon, E. Discrete Mesh Approach in Morphogenesis Modelling: the Example of Gastrulation. Acta Biotheor 64, 427–446 (2016). https://doi.org/10.1007/s10441-016-9301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-016-9301-4

Keywords

Navigation