Skip to main content
Log in

The Poitiers School of Mathematical and Theoretical Biology: Besson–Gavaudan–Schützenberger’s Conjectures on Genetic Code and RNA Structures

  • Regular article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The French school of theoretical biology has been mainly initiated in Poitiers during the sixties by scientists like J. Besson, G. Bouligand, P. Gavaudan, M. P. Schützenberger and R. Thom, launching many new research domains on the fractal dimension, the combinatorial properties of the genetic code and related amino-acids as well as on the genetic regulation of the biological processes. Presently, the biological science knows that RNA molecules are often involved in the regulation of complex genetic networks as effectors, e.g., activators (small RNAs as transcription factors), inhibitors (micro-RNAs) or hybrids (circular RNAs). Examples of such networks will be given showing that (1) there exist RNA “relics” that have played an important role during evolution and have survived in many genomes, whose probability distribution of their sub-sequences is quantified by the Shannon entropy, and (2) the robustness of the dynamics of the networks they regulate can be characterized by the Kolmogorov–Sinaï dynamic entropy and attractor entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Almeida L, Demongeot J (2012) Predictive power of “a minima” models in biology. Acta Biotheor 60:3–19

    Article  Google Scholar 

  • Besson J (1977) Topology of circular DNA. Annales de Génétique 20:145–152

    Google Scholar 

  • Besson J (1994) Passion des formes: dynamique qualitative sémiophysique et intelligibilité. A René Thom. Porte M (ed). ENS Editions, Fontenay-Saint Cloud, p 803

  • Besson J (2001) La quête de M.P. Schützenberger en biologie et médecine, pp 1–6. http://igm.univ-mlv.fr/~berstel/Mps/Souvenirs/Contributions/JacquesBesson/MPSParBesson.pdf

  • Besson J, Gavaudan P (1967a) On the logarithmic organization of the genetic code. C R Acad Sci D 264:1311–1314

    Google Scholar 

  • Besson J, Gavaudan P (1967b) Antinomias in the axiomatization of genetic coding by triplets. C R Acad Sci D 264:2405–2408

    Google Scholar 

  • Besson J, Gavaudan P, Schützenberger MP (1969) Sur l’existence d’une certaine corrélation entre le poids moléculaire des acides aminés et le nombre de triplets intervenant dans leurs codages. C R Acad Sci Paris 268:1342–1344

    Google Scholar 

  • Binder S, Schuster W, Grienenberger JM, Weil JH, Brennicke A (1990) Genes for Gly-, His-, Lys-, Phe-, Ser- and Tyr-tRNA are encoded in Oenothera mitochondrial DNA. Curr Genet 17:353–358

    Article  Google Scholar 

  • Brent MR, Guigó R (2004) Recent advances in gene structure prediction. Curr Opin Struct Biol 14:264–272

    Article  Google Scholar 

  • Brooks DJ, Fresco JR, Arthur M, Lesk AM, Singh M (2002) Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code. Mol Biol Evol 19:1645–1655

    Article  Google Scholar 

  • Choi H, Gabriel K, Schneider J, Otten S, McClain WH (2003) Recognition of acceptor-stem structure of tRNAAsp by Escherichia coli aspartyl-tRNA synthetase. RNA 9:386–393

    Article  Google Scholar 

  • Chomsky N, Schützenberger MP (1963) The algebraic theory of context-free languages. In: Braffort P, Hirschberg D (eds) Computer programming and formal systems. North Holland, Amsterdam, pp 118–161

    Chapter  Google Scholar 

  • Crick FHC, Barnett L, Brenner S, Watts-Tobin RJ (1961) General nature of the genetic code for proteins. Nature 192:1227–1232

    Article  Google Scholar 

  • Crick FHC, Brenner S, Klug A, Pieczenik G (1976) A speculation on the origin of protein synthesis. Orig Life 7:389–397

    Article  Google Scholar 

  • Cuénot L (1938) Présentation d’un arbre généalogique du Règne animal. Bull Soc Sci Nancy 3:110–115

    Google Scholar 

  • Cullmann G, Labouygues JM (1983) Noise immunity of the genetic code. Biosystems 16:9–29

    Article  Google Scholar 

  • Demetrius L (1983) Statistical mechanics and population biology. J Stat Phys 30:709–753

    Article  Google Scholar 

  • Demetrius L (1997) Directionality principles in thermodynamics and evolution. Proc Natl Acad Sci USA 94:3491–3498

    Article  Google Scholar 

  • Demetrius L, Ziehe M (2007) Darwinian fitness. Theor Popul Biol 72:323–345

    Article  Google Scholar 

  • Demetrius L, Gundlach M, Ochs G (2004) Complexity and demographic stability in population models. Theor Popul Biol 65:211–225

    Article  Google Scholar 

  • Demongeot J (1975) Au sujet de quelques modèles stochastiques appliqués à la biologie. Doctoral dissertation, Université J. Fourier, Grenoble. http://tel.archives-ouvertes.fr/tel-00286222

  • Demongeot J (1978) Sur la possibilité de considérer le code génétique comme un code à enchaînement. Revue de Biomathématiques 62:61–66

    Google Scholar 

  • Demongeot J, Besson J (1983) Code génétique et codes à enchaînement I. C R Acad Sci Ser III 296:807–810

    Google Scholar 

  • Demongeot J, Besson J (1996) Genetic code and cyclic codes II. C R Acad Sci Ser III 319:520–528

    Google Scholar 

  • Demongeot J, Demetrius L (2015) Complexity and stability in biological systems. Int J Bifurc Chaos 25:1540013

    Article  Google Scholar 

  • Demongeot J, Moreira A (2007) A circular RNA at the origin of life. J Theor Biol 249:314–324

    Article  Google Scholar 

  • Demongeot J, Weil G (2008) Complexification de la mémoire génétique. In: Bourgine P, Chavalarias D, Cohen-Boulakia C (eds) Déterminismes et complexités: du physique à l’éthique. Editions de la Découverte, Paris, pp 81–112

    Google Scholar 

  • Demongeot J, Aracena J, Thuderoz F, Baum TP, Cohen O (2003) Genetic regulation networks: circuits, regulons and attractors. C R Biol 326:171–188

    Article  Google Scholar 

  • Demongeot J, Drouet E, Moreira A, Rechoum Y, Sené S (2009a) MicroRNAs: viral genome and robustness of the genes expression in host. Philos Trans R Soc A 367:4941–4965

    Article  Google Scholar 

  • Demongeot J, Glade N, Moreira A, Vial L (2009b) RNA relics and origin of life. Int J Mol Sci 10:3420–3441

    Article  Google Scholar 

  • Demongeot J, Cohen O, Henrion-Caude A (2013) MicroRNAs and robustness in biological regulatory networks. A generic approach with applications at different levels: physiologic, metabolic, and genetic. Springer Ser Biophys 16:63–114

    Article  Google Scholar 

  • Demongeot J, Ben Amor H, Hazgui H, Waku J (2014) Robustness in neural and genetic regulatory networks: mathematical approach and biological applications. Acta Biotheor 62:243–284

    Article  Google Scholar 

  • Demongeot J, Hazgui H, Henrion Caude A (2015) Genetic regulatory networks: focus on attractors of their dynamics. In: Tran QN, Arabnia HR (eds) Computational biology, bioinformatics & systems biology. Elsevier, New York, pp 135–165

    Google Scholar 

  • Di Giulio M (2009) A comparison among the models proposed to explain the origin of the tRNA molecule: a synthesis. J Mol Evol 69:1–9

    Article  Google Scholar 

  • Franch T, Petersen M, Gerhart E, Wagner H, Jacobsen JP, Gerdes K (1999) Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J Mol Biol 294:1115–1125

    Article  Google Scholar 

  • Gamow G, Ycas M (1955) Statistical correlation of protein and ribonucleic acid composition. Proc Natl Acad Sci USA 41:1011–1019

    Article  Google Scholar 

  • Gamow G, Rich A, Ycas M (1956) The problem of information transfer from the nucleic acids to proteins. Adv Biol Med Phys 4:23–68

    Article  Google Scholar 

  • Gavaudan P (1971) Internal logic of genetic coding. C R Acad Sci D 272:1672–1675

    Google Scholar 

  • Gavaudan P (1984) Atomes et molécules biogéniques dans l’univers des nombres. Edition Pierre Gavaudan, Sorgues

    Google Scholar 

  • Gavaudan P, Besson J (1967) Remarks on the methods of translation of the genetic code in polypeptide chains. C R Acad Sci D 264:1919–1922

    Google Scholar 

  • Gavaudan P, Besson J (1969a) Statistical and segmental analysis of the composition of polypeptide chains. C R Acad Sci D 268:173–175

    Google Scholar 

  • Gavaudan P, Besson J (1969b) On the causes of the mode of distribution of redundancies in the genetic code. C R Acad Sci D 268:2130–2132

    Google Scholar 

  • Gavaudan P, Gavaudan N (1938) Mécanisme d’action de la colchicine sur la caryocinèse des végétaux. C R Soc Biol 128:714

    Google Scholar 

  • Gavaudan P, Schützenberger MP, Poussel H (1947) L’excitation des chimiorécepteurs de la langue par des substances du groupe des narcotiques indifférentes et la règle thermodynamique de la narcose. C R Acad Sci 224:1525–1527

    Google Scholar 

  • Gavaudan P, Poussel H, Schützenberger MP (1948) Le mécanisme physico-chimique de l’excitation sapide et la notion d’excitant indifférent. C R Acad Sci Paris 226:751–752

    Google Scholar 

  • Griffiths-Jones S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucl Acids Res 33:121–124

    Article  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  Google Scholar 

  • Hobish MK, Wickramasinghe NSMD, Ponnamperuma C (1995) Direct interaction between amino-acids and nucleotides as a possible physico-chemical basis for the origin of the genetic code. Adv Space Res 15:365–375

    Article  Google Scholar 

  • Holley RW, Everett GA, Madison JT, Zamir A (1965a) Nucleotide sequences in the yeast alanine transfer ribonucleic acid. J Biol Chem 240:2122–2128

    Google Scholar 

  • Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A (1965b) Structure of a ribonucleic acid. Science 147:1462–1465

    Article  Google Scholar 

  • Huck J (2011) Emergence in complex systems based on synthetic replicators. Doctoral dissertation, University of St Andrews

  • Katchalsky A (1973) Prebiotic synthesis of biopolymers on inorganic templates. Naturwissenschaften 60:215–220

    Article  Google Scholar 

  • Klingler T, Brutlag DL (1993) Detection of correlations in tRNA with structural implications. Intell Syst Mol Biol 1:225–233

    Google Scholar 

  • Lejeune J, Gautier M, Turpin R (1959) Etude des chromosomes somatiques de neuf enfants mongoliens. C R Acad Sci 248:1721–1722

    Google Scholar 

  • Lewin B (1960) Alternatives for splicing: recognizing the ends of lntrons. Cell 22:324–326

    Article  Google Scholar 

  • Lewin B (2008) Genes IX. Jones & Bartlett, Boston

    Google Scholar 

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  Google Scholar 

  • Meyer SC, Nelson PA (2011) Can the origin of the genetic code be explained by direct RNA templating? Bio-complexity 2011:1–10

    Article  Google Scholar 

  • Michaud M, Cognat V, Duchêne AM, Maréchal-Drouard L (2011) A global picture of tRNA genes in plant genomes. Plant J 66:80–93

    Article  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529

    Article  Google Scholar 

  • Nirenberg MW, Matthaei HJ (1961) The dependence of cell- free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47:1588–1602

    Article  Google Scholar 

  • Nishimura S, Jones DS, Khorana HG (1965) The in vitro synthesis of a co-polypeptide containing two amino acids in alternating sequence dependent upon a DNA-like polymer containing two nucleotides in alternating sequence. J Mol Biol 13:302–324

    Article  Google Scholar 

  • Orgel LE, Crick FHC (1993) Anticipating an RNA world. Some past speculations on the origin of life: where are they today? FASEB J 7:238–239

    Google Scholar 

  • Piccinelli P, Samuelsson T (2007) Evolution of the iron-responsive element. RNA 13:952–966

    Article  Google Scholar 

  • Prado-Prado F, García-Mera X, Abeijón P, Alonso N, Caamaño O, Yáñez M, Gárate T, Mezo M, González-Warleta M, Muiño L, Ubeira FM, González-Díaz H (2011) Using entropy of drug and protein graphs to predict FDA drug-target network: theoretic-experimental study of MAO inhibitors and hemoglobin peptides from Fasciola hepatica. Eur J Med Chem 44:1074–1094

    Article  Google Scholar 

  • Riera-Fernández P, Munteanu CR, Escobar M, Prado-Prado F, Martín-Romalde R, Pereira D, Villalba K, Duardo-Sánchez A, González-Díaz H (2012) New Markov–Shannon entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, parasite-host, neural, industry & legal-social networks. J Theor Biol 293:174–188

    Article  Google Scholar 

  • Rychlik W, Spencer WJ, Rhoads RE (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucl Acids Res 18:6409–6412

    Article  Google Scholar 

  • Sadownik J (2009) Evolving complex systems from simple molecules. Doctoral dissertation, University of St Andrews

  • Sangokoya C, Doss JF, Chi JT (2013) Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin. PLoS Genet 9:e1003408

    Article  Google Scholar 

  • Schützenberger MP, Turpin R (1949) L’étude des dermatoglyphes. Semaine des Hôpitaux de Paris 25:2553–2562

    Google Scholar 

  • Seligmann H, Raoult D (2016) Unifying view of stem–loop hairpin RNA as origin of current and ancient parasitic and non-parasitic RNAs, including in giant viruses. Curr Opin Microbiol 31:1–8

    Article  Google Scholar 

  • Shigi N, Suzuki T, Tamakoshi M, Oshima T, Watanabe K (2002) Conserved bases in the TψC-loop of tRNA are determinants for thermophile-specific 2-thiouridylation at position 54*. J Biol Chem 277:39128–39135

    Article  Google Scholar 

  • Sonneborn TM (1965) Degeneracy of the genetic code: extent, nature and genetic implications. In: Bryson V, Vogel H (eds) Evolving genes and proteins. Academic Press, New York, pp 377–397

    Chapter  Google Scholar 

  • Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucl Acids Res 26:148–153

    Article  Google Scholar 

  • Subirana JA, Messeguer X (2010) The most frequent short sequences in non-coding DNA. Nucl Acids Res 38:1172–1181

    Article  Google Scholar 

  • Tanaka T, Kikuchi Y (2001) Origin of the cloverleaf shape of transfer RNA—the double-hairpin model: Implication for the role of tRNA intro and the long extra loop. Viva Origino 29:119–142

    Google Scholar 

  • Thom R (1988) Esquisse d’une sémiophysique. Théorie des catastrophes et physique aristotélicienne. Interéditions, Paris

    Google Scholar 

  • Turpin R, Lejeune J (1954) Analogie entre le type dermatoglyphe des singes inférieurs et celui des enfants atteints de mongolisme. C R Acad Sci 238:395–397

    Google Scholar 

  • Waddington CH (1940) Organisers and genes. Cambridge University Press, Cambridge

    Google Scholar 

  • Waddington CH (1952) The epigenetics of birds. Cambridge University Press, Cambridge

    Google Scholar 

  • Watson JD, Crick FHC (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967

    Article  Google Scholar 

  • Yarus M, Widmann JJ, Knight R (2009) RNA-amino acid binding: a stereochemical era for the genetic code. J Mol Evol 69:406–429

    Article  Google Scholar 

Download references

Acknowledgments

We thank the ANR Project REGENR for financially aiding our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Demongeot.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demongeot, J., Hazgui, H. The Poitiers School of Mathematical and Theoretical Biology: Besson–Gavaudan–Schützenberger’s Conjectures on Genetic Code and RNA Structures. Acta Biotheor 64, 403–426 (2016). https://doi.org/10.1007/s10441-016-9287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-016-9287-y

Keywords

Navigation