Skip to main content
Log in

Developmental Models for Estimating Ecological Responses to Environmental Variability: Structural, Parametric, and Experimental Issues

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Developmental models that account for the metabolic effect of temperature variability on poikilotherms, such as degree-day models, have been widely used to study organism emergence, range and development, particularly in agricultural and vector-borne disease contexts. Though simple and easy to use, structural and parametric issues can influence the outputs of such models, often substantially. Because the underlying assumptions and limitations of these models have rarely been considered, this paper reviews the structural, parametric, and experimental issues that arise when using degree-day models, including the implications of particular structural or parametric choices, as well as assumptions that underlie commonly used models. Linear and non-linear developmental functions are compared, as are common methods used to incorporate temperature thresholds and calculate daily degree-days. Substantial differences in predicted emergence time arose when using linear versus non-linear developmental functions to model the emergence time in a model organism. The optimal method for calculating degree-days depends upon where key temperature threshold parameters fall relative to the daily minimum and maximum temperatures, as well as the shape of the daily temperature curve. No method is shown to be universally superior, though one commonly used method, the daily average method, consistently provides accurate results. The sensitivity of model projections to these methodological issues highlights the need to make structural and parametric selections based on a careful consideration of the specific biological response of the organism under study, and the specific temperature conditions of the geographic regions of interest. When degree-day model limitations are considered and model assumptions met, the models can be a powerful tool for studying temperature-dependent development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen J (1976) A modified sine wave method for calculating degree days. Environ Entomol 5(3):388–396

    Google Scholar 

  • Allsopp P, Butler D (1987) Estimating day-degrees from daily maximum-minimum temperatures: A comparison of techniques for a soil-dwelling insect. Agric For Meteorol 41(1-2):165–172

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer M, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good J, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8(1):1–16

    Article  Google Scholar 

  • Beck S (1983) Insect thermoperiodism. Annu Rev Entomol 28(1):91–108

    Article  Google Scholar 

  • Beier J (1998) Malaria parasite development in mosquitoes. Annu Rev Entomol 43(1):519–543

    Article  Google Scholar 

  • Bensadia F, Boudreault S, Guay J, Michaud D, Cloutier C (2006) Aphid clonal resistance to a parasitoid fails under heat stress. J Insect Physiol 52(2):146–157

    Article  Google Scholar 

  • Bergant K, Trdan S (2006) How reliable are thermal constants for insect development when estimated from laboratory experiments? Entomol Exp Appl 120(3):251–256

    Article  Google Scholar 

  • Bolnick D, Amarasekare P, Araujo M, Burger R, Levine J, Novak M, Rudolf V, Schreiber S, Urban M, Vasseur D (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26(4):183–192

    Article  Google Scholar 

  • Bonhomme R (2000) Bases and limits to using degree day units. Eur J Agron 13(1):1–10

    Article  Google Scholar 

  • Brakefield P, Mazzotta V (1995) Matching field and laboratory environments: effects of neglecting daily temperature variation on insect reaction norms. J Evol Biol 8(5):559–573

    Article  Google Scholar 

  • Briere J, Pracros P, le Roux A, Pierre J (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28(1):22–29

    Google Scholar 

  • Brown J, Gillooly J, Allen A, Savage V, West G (2004) Toward a metabolic theory of ecology. Ecology 85(7):1771–1789

    Article  Google Scholar 

  • Campbell A, Frazer B, Gilbert N, Gutierrez A, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11(2):431–438

    Article  Google Scholar 

  • Cesaraccio C, Donatella S, Duce P, Snyder R (2001) An improved model for determining degree-day values from daily temperature data. Int J Biometeorol 45(4):161–169

    Article  Google Scholar 

  • Charlwood JD, Smith T, Billingsley PF, Takken W, Lyimo EOK, Meuwissen JHET (1997) Survival and infection probabilities of anthropophagic anophelines from an area of high prevalence of plasmodium falciparum in humans. Bull Entomol Res 87(5):445–453

    Article  Google Scholar 

  • Corley J, Bruzzone O (2009) Delayed emergence and the success of parasitoids in biological control. Biol Control 51(3):471–474

    Article  Google Scholar 

  • Craig M, Snow R, le Sueur D (1999) A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 15(3):7

    Article  Google Scholar 

  • Dabbs G (2010) Caution! All data are not created equal: The hazards of using National Weather Service data for calculating accumulated degree days. Forensic Sci Int 202(1–3):e49–e52

    Article  Google Scholar 

  • Dahlsten D, Rowney D, Tait S (1994) Development of integrated pest management programs in urban forests: the elm beetle (Xanthogaleruca luteola (Müller)) in California, USA. For Ecol Manag 65(1):31–44

    Article  Google Scholar 

  • ECAD (2011) European Climate Assessment and Dataset, European Climate Support Network. http://eca.knmi.nl/. Accessed April 2011

  • Elliott R, Mann L, Olfert O (2009) Calendar and degree-day requirements for emergence of adult wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in Saskatchewan, Canada. Crop Prot 28(7):588–594

    Article  Google Scholar 

  • Gilbert E, Powell J, Logan J, Bentz B (2004) Comparison of three models predicting developmental milestones given environmental and individual variation. Bull Math Biol 66(6):1821–1850

    Article  Google Scholar 

  • Gould J, Venette R, Winograd D (2005) Effect of temperature on development and population parameters of Copitarsia decolora (Lepidoptera: Noctuidae). Environ Entomol 34(3):548–556

    Article  Google Scholar 

  • Gutierrez AP, Ponti L, Hoddle M, Almeida RP, Irvin N (2011) Geographic distribution and relative abundance of the invasive glassy-winged sharpshooter: effects of temperature and egg parasitoids. Environ Entomol 40(4):755–769

    Article  Google Scholar 

  • Hagstrum D, Milliken G (1988) Quantitative analysis of temperature, moisture, and diet factors affecting insect development. Ann Entomol Soc Am 81(4):539–546

    Google Scholar 

  • Hardman J (1976) Life table data for use in deterministic and stochastic simulation models predicting the growth of insect populations under Malthusian conditions. Can Entomol 108(9):897–906

    Article  Google Scholar 

  • Hartley S, Krushelnycky P, Lester P (2010) Integrating physiology, popultion dynamics and climate to make multi-scale predictions for the spread of an invasive insect: the argentine ant at haleakala national park, hawaii. Ecography 33:83–94

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predicitons. Bull Am Meteorol Soc 90(8):1095–1107

    Article  Google Scholar 

  • Hemerik L, van Nes E (2008) A new release of insim: A temperature-dependent model for insect development. Proc Neth Entomol Soc Meet 19:147–155

    Google Scholar 

  • Hemerik L, Busstra C, Mols P (2004) Predicting the temperature-dependent natural population expansion of the western corn rootworm, Diabrotica virgifera. Entomol Exp Appl 111:59–69

    Article  Google Scholar 

  • Higley LG, Pedigo LP, Ostlie KR (1986) Degday: A program for calculating degre-days, and assumptions behind the degree-day approach. Environ Entomol 15(5):999–1016

    Google Scholar 

  • Hilbert D, Logan J (1983) Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera, Acrididae). Environ Entomol 12(1):1–5

    Google Scholar 

  • Killeen G, McKenzie F, Foy B, Schieffelin C, Billingsley P, Beier J (2000) A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62(5):535–544

    Google Scholar 

  • Kilpatrick A, Fonseca D, Ebel G, Reddy M, Kramer L (2010) Spatial and temporal variation in vector competence of Culex pipiens and Cx. restuans mosquitoes for West Nile Virus. Am J Trop Med Hyg 83(3):607–613

    Article  Google Scholar 

  • Kontodimas D, Eliopoulos P, Stathas G, Economou L (2004) Comparative temperature-dependent development of Nephus includens and Nephus bisignatus preying on Planococcus citri: Evaluation of a linear and various nonlinear models using specific criteria. Environ Entomol 33(1):1–11

    Article  Google Scholar 

  • Lactin D, Holliday N, Johnson D, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24(1):68–75

    Google Scholar 

  • Lardeux F, Cheffort J (1997) Temperature thresholds and statistical modelling of larval Wuchereria bancrofti (Filariidea: Onchocercidae) developmental rates. Parasitology 114(2):123–134

    Article  Google Scholar 

  • Liang S, Spear R, Seto E, Hubbard A, Qiu D (2005) A multi-group model of Schistosoma japonicum transmission dynamics and control: model calibration and control prediction. Trop Med Int Health 10(3):263–278

    Article  Google Scholar 

  • Lindsay S, Hole D, Hutchinson R, Richards S, Willis S (2010) Assessing the future threat from vivax malaria in the United Kingdom using two markedly different modelling approaches. Malaria J 9(1):1–8

    Article  Google Scholar 

  • Lobell D, Bonfils C, Duffy P (2007) Climate change uncertainty for daily minimum and maximum temperature: A model inter-comparison. Geophys Res Lett 34(5):1–5

    Google Scholar 

  • Logan J, Powell J (2001) Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). Am Entomol 47(3):160–173

    Google Scholar 

  • Logan J, Wollkind D, Hoyt S, Tanigoshi L (1976) An analytic model for description of temperature-dependent rate phenomena in arthropods. Environ Entomol 5(6):1133–1140

    Google Scholar 

  • Logan J, Wolesensky W, Joern A (2007) Insect development under predation risk, variable temperature, and variable food quality. Math Biosci Eng 4(1):47–65

    Google Scholar 

  • Lopez C, Sans A, Asin L, EizaGuirre M (2001) Phenological model for Sesamia nonagrioides (Lepidoptera: Noctuidae). Environ Entomol 30(1):23–30

    Article  Google Scholar 

  • McMaster G, Wilhelm W (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87(4):291–300

    Article  Google Scholar 

  • Molnar P, Kutz S, Hoar B, Dobson A (2013) Metabolic approaches to understanding climate change impacts on seasonal host-macroparasite dynamics. Ecol Lett 16:9–21

    Article  Google Scholar 

  • Mols P, Diederik D (1996) Insim a simulation environment for pest forecasting and simulation of pest-natural enemy interaction. Acta Horticultura 416:255–262

    Google Scholar 

  • Moore J, Liang S, Akullian A, Remais J (2012) Cautioning the use of degree-day models for climate change projections in the presence of parametric uncertainty. Ecol Appl 22(8):2237–2247

    Article  Google Scholar 

  • Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, Moor E, McNally A, Pawar S, Ryan SJ, Smith TC, Lafferty KD (2013) Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett 16(1):22–30

    Article  Google Scholar 

  • Nahrung H, Schutze M, Clarke A, Duffy M, Dunlop E, Lawson S (2008) Thermal requirements, field mortality and population phenology modelling of Paropsis atomaria Olivier, an emergent pest in subtropical hardwood plantations. For Ecol Manag 255(8-9):3515–3523

    Article  Google Scholar 

  • Naves P, de Sousa E (2009) Threshold temperatures and degree-day estimates for development of post-dormancy larvae of Monochamus galloprovincialis (Coleoptera: Cerambycidae). J Pest Sci 82(1):1–6

    Article  Google Scholar 

  • NOAA (2011) US Climate Reference Network. http://www.ncdc.noaa.gov/crn/. Accessed 25 April 2011

  • Obrycki J, Kring T (1998) Predaceous coccinellidae in biological control. Annu Rev Entomol 43(1):295–321

    Article  Google Scholar 

  • Ogden N, Bigras-Poulin M, O’Callaghan C, Barker I, Lindsay L, Maarouf A, Smoyer-Tomic K, Waltner-Toews D, Charron D (2005) A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis. Int J Parasitol 35(4):375–389

    Article  Google Scholar 

  • Ogden N, Maarouf A, Barker I, Bigras-Poulin M, Lindsay L, Morshed M, O’Callaghan C, Ramay F, Waltner-Toews D, Charron D (2006) Climate change and the potential for range expansion of the lyme disease vector of Ixodes scapularis in Canada. Int J Parasitol 36(1):63–70

    Article  Google Scholar 

  • Paaijmans K, Read A, Thomas M (2009) Understanding the link between malaria risk and climate. P Natl Acad Sci 106(33):13,844–13,849

    Article  Google Scholar 

  • Paaijmans K, Blanford S, Bell A, Blanford J, Read A, Thomas M (2010a) Influence of climate on malaria transmission depends on daily temperature variation. P Natl Acad Sci 107(34):15,135–15,139

    Article  Google Scholar 

  • Paaijmans K, Imbahale S, Thomas M, Takken W (2010b) Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malaria J 9(196):1–8

    Google Scholar 

  • Powell J, Bentz B (2009) Connecting phenological predictions with population growth rates for mountain pine beetle, an outbreak insect. Landscape Ecol 24(5):657–672

    Article  Google Scholar 

  • Powell J, Logan J (2005) Insect seasonality: circle map analysis of temperature-driven life cycles. Theor Popul Biol 67(3):161–179

    Article  Google Scholar 

  • Pruess KP (1983) Day-degree methods for pest management. Environ Entomol 12(3):613–619

    Google Scholar 

  • Reaumur R (1735) Observations du thermometre faites pendant l’annee 1735 comparees a celles qui ont ete faites sous la ligne a l’isle-de-france, a alger et en quelques-unes de nos isles de l’amerique. Memoires de l’Academie Royale des Sciences pp 545–576

  • Reicosky D, Winkelman L, Baker J, Baker D (1989) Accuracy of hourly air temperatures calculated from daily minima and maxima. Agric For Meteorol 46(3):193–209

    Article  Google Scholar 

  • Remais J, Hubbard A, Zisong W, Spear R (2007) Weather-driven dynamics of an intermediate host: mechanistic and statistical population modelling of Oncomelania hupensis. J Appl Ecol 44(4):781–791

    Article  Google Scholar 

  • Ren C, Ma B, Burrows V, Zhou J, Hu Y, Guo L, Wei L, Sha L, Deng L (2007) Evaluation of early mature naked oat varieties as a summer-seeded crop in dryland northern climate regions. Field Crop Res 103(3):248–254

    Article  Google Scholar 

  • Roltsch W, Zalom F, Strawn A, Strand J, Pitcairn M (1999) Evaluation of several degree-day estimation methods in California climates. Int J Biometeorol 42(4):169–176

    Article  Google Scholar 

  • Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera : Coccinellidae) and its prey Tetranychus mcdanieli (Acarina : Tetranychidae). Environ Entomol 31(1):177–187

    Article  Google Scholar 

  • Samways M (1989) Climate diagrams and biological control: an example from the areography of the ladybird Chilocorus nigritus (Fabricius, 1798) (Insecta, Coleoptera, Coccinellidae). J Biogeogr 16(4):345–351

    Article  Google Scholar 

  • Sanchez-Ramos I, Castanera P (2001) Development and survival of Tyrophagus putrescentiae (Acari : Acaridae) at constant temperatures. Environ Entomol 30(6):1082–1089

    Article  Google Scholar 

  • Schoener T (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331(6016):426–429

    Article  Google Scholar 

  • Sharpe P, DeMichele D (1977) Reaction-kinetics of poikilotherm development. J Theor Biol 64(4):649–670

    Article  Google Scholar 

  • Sharratt B, Sheaffer C, Baker D (1989) Base temperature for the application of the growing-degree-day model to field-grown alfalfa. Field Crop Res 21(2):95–102

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Tech. rep.

  • Tobin P, Nagarkatti S, Saunders M (2001) Modeling development in grape berry moth (Lepidoptera : Tortricidae). Environ Entomol 30(4):692–699

    Article  Google Scholar 

  • Trudgill D, Honek A, Li D, Van Straalen N (2005) Thermal time – concepts and utility. Ann Appl Biol 146(1):1–14

    Article  Google Scholar 

  • University of California IPMP (2011) Run models and calculate degree-days. http://www.ipm.ucdavis.edu/WEATHER/ddretrieve.html. Accessed 19 May 2011

  • University of Illinois PRI (2011) Daily pest degree-day accumulations. http://www.isws.illinois.edu/warm/pestdata/, Accessed 19 May

  • University of Wisconsin EAW (2011) Degree day calculator. http://www.soils.wisc.edu/uwex_agwx/thermal_models/degree_days. Accessed 19 May 2011

  • Visser M, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. P Roy Soc Lond B Biol Sci 272(1581):2561–2569

    Article  Google Scholar 

  • Wagner T, Wu H, Sharpe P, Coulson R (1984) Modeling distributions of insect development time - a literature review and application of the Weibull function. Ann Entomol Soc Am 77(5):475–487

    Google Scholar 

  • Wagner T, Olson R, Willers J (1991) Modeling arthropod development time. J Agric Entomol 8(4):251–270

    Google Scholar 

  • Wang J (1960) A critique of the heat unit approach to plant response studies. Ecology 41(4):790

    Article  Google Scholar 

  • Wilson L, Barnett W (1983) Degree-days: an aid in crop and pest management. Calif Agric 37(1):4–7

    Google Scholar 

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in tempearte zones. Appl Entomol Zool 33(2):289–298

    Google Scholar 

  • Yang G, Gemperli A, Vounatsou P, Tanner M, Zhou X, Utzinger J (2006) A growing degree-day based time-series analysis for prediction of Schistosomiasis japonicum transmission in Jiangsu Province, China. Am J Trop Med Hyg 75(3):549–555

    Google Scholar 

  • Yang G, Gao Q, Zhou S, Malone J, McCarroll J, Tanner M, Vounatsou P, Bergquist R, Utzinger J, Zhou X (2010) Mapping and predicting malaria transmission in the People’s Republic of China, using integrated biology-driven and statistical models. Geospatial Health 5(1):11–22

    Google Scholar 

  • Yang S, Logan J, Coffey D (1995) Mathematical formulae for calculating the base temperature for growing degree days. Agric For Meteorol 74(1-2):61–74

    Article  Google Scholar 

  • Zhang Z, Ong S, Peng W, Zhou Y, Zhuang J, Zhao G, Jiang Q (2008) A model for the prediction of Oncomelania hupensis in the lake and marshland regions, China. Parasitol Int 57(2):121–131

    Article  Google Scholar 

  • Zhou X, Yang G, Wang X, Hong Q, Sun L, Malone J, Kristensen T, Bergquist N, Utzinger J (2008) Potential impact of climate change on schistosomiasis transmission in China. Am J Trop Med Hyg 78(2):188–194

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ecology of Infectious Disease program of the National Science Foundation under Grant No. 0622743, by the National Institute for Allergy and Infectious Disease (K01AI091864) and by the Global Health Institute at Emory University. JLM acknowledges the support of a training grant from the National Institute for Allergy and Infectious Disease (T32AI055404), a NSF Graduate Research Fellowship (award number DGE-0940903), and a NSF GK-12 Fellowship (under DGE grant #0841297 to S.L. Williams and B. Ludaescher). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin V. Remais.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Non-linear models PDF (324 KB)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Comparison of linear and non-linear models PDF (127 KB)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Weather stations used in the comparison of daily degree-day methods PDF (85 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, J.L., Remais, J.V. Developmental Models for Estimating Ecological Responses to Environmental Variability: Structural, Parametric, and Experimental Issues. Acta Biotheor 62, 69–90 (2014). https://doi.org/10.1007/s10441-014-9209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-014-9209-9

Keywords

Navigation