Skip to main content
Log in

Study on the Biological Correlation of a Diffusive Food Web Model with Application

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Predators possess individual feeding behaviour in their territory. Mostly they attack prey according to their convenience and availability. Sometimes the predator predates upon more than one trophic level for survival. Also, the species go through self-interaction to acquire resources, habitats, food, mates, etc. In this study, we take a food web model consisting of basal prey, intermediate predator, and omnivorous as a top predator. We assume logistic growth for prey and intermediate predator. Here, the prey and the intermediate predator interaction is incorporated by the linear functional response, and other species interactions are followed by Holling Type II. We have studied the temporal as well as the spatio-temporal dynamics of this model. Turing instability conditions are also investigated. We generalize the effect of the diffusion coefficient on the spatial system. Higher-order stability analysis is explained with stability and instability criteria. Numerical verifications with the help of phase portraits, bifurcation, and Turing patterns are presented to illustrate the system’s dynamical behaviour and correlate with the applicability in the real world. We have implicated our model in the agricultural for omnivore carabid species to understand the consequence of their intraspecific interaction as well as trophic interactions. Also, we have validated this correlation with our model dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139(3), 311–326 (1989)

    Article  Google Scholar 

  2. Aunapuu, M., Oksanen, L., Oksanen, T., Korpimäki, E.: Intraguild predation and interspecific co-existence between predatory endotherms. Evol. Ecol. Res. 12(2), 151–168 (2010)

    Google Scholar 

  3. Aziz-Alaoui, M.A.: Study of a Leslie-Gower-type tri-trophic population model. Chaos Solitons Fractals 14, 1275–1293 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aziz-Alaoui, M.A., Daher, O.M.: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banerjee, M.: Spatial pattern formation in ratio-dependent model: higher-order stability analysis. Math. Med. Biol. 28(2), 111–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)

    MATH  Google Scholar 

  7. Camara, B.I., Aziz-Alaoui, M.A.: Turing and Hopf patterns formation in a predator-prey model with Leslie–Gower-type functional response. Dyn. Contin. Discrete Impuls. Syst. 16, 479–488 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Chakraborty, S., Tiwari, P.K., Sasmal, S.K., Biswal, S., Bhattacharya, S., Chattopadhyay, J.: Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system. Appl. Math. Model. 47, 128 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, S., Wei, J., Zhang, J.: Dynamics of a diffusive predator–prey model: the effect of conversion rate. J. Dyn. Differ. Equ. 30, 1683–1701 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chena, M., Wua, R., Chen, L.: Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system. Appl. Math. Comput. 380, 125300 (2020)

    MathSciNet  MATH  Google Scholar 

  11. De Heij, S.E., Willenborg, C.J.: Connected carabids: network interactions and their impact on biocontrol by carabid beetles. Bioscience 70(6), 490–500 (2020)

    Article  Google Scholar 

  12. Dhar, J., Baghel, R.S.: Role of dissolved oxygen on the plankton dynamics in spatio-temporal domain. Model. Earth Syst. Environ. 2(1), 6 (2016)

    Article  Google Scholar 

  13. Forbes, S.A.: The food relations of the Carabidae and the Coccinellidae. Bull. Ill. State Lab. Nat. Hist. 1, 33–64 (1883)

    Google Scholar 

  14. Holt, R.D., Polis, G.A.: A theoretical framework for intraguild predation. Am. Nat. 149, 745–764 (1997)

    Article  Google Scholar 

  15. Hoyle, A., Bowers, R.: When is evolutionary branching in predator–prey systems possible with an explicit carrying capacity? Math. Biosci. 210, 1–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsu, S.B., Ruan, S., Yang, T.H.: Analysis of three species Lotka-Volterra food web models with omnivory. J. Math. Anal. 426(2), 659–687 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kang, Y., Wedekin, L.: Dynamics of a intraguild predation model with generalist or specialist predator. J. Math. Biol. 67(5), 1227–1259 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Köhnke, M.C.: Invasion dynamics in an intraguild predation system with predator-induced defense. Bull. Math. Biol. 81, 3754–3777 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kumari, S., Upadhyay, R.K.: Dynamics comparison between non-spatial and spatial systems of the plankton-fish interaction model. Nonlinear Dyn. 99, 2479–2503 (2020)

    Article  Google Scholar 

  20. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator–prey type of interaction between two species. Biometrika 47(3–4), 219–234 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  21. Levin, S.A., Segel, L.A.: Hypothesis for origin of planktonic patchiness. Nature 259, 659 (1976)

    Article  Google Scholar 

  22. Li, X., Jiang, W., Shi, J.: Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model. IMA J. Appl. Math. 78(2), 287–306 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lincoln, R., Boxshall, G., Clark, P.: A Dictionary of Ecology, Evolution, and Systematic, 2nd edn. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  24. Liu, W.M.: Criterion of Hopf bifurcations without using eigenvalues. J. Math. Anal. Appl. 182(1), 250–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins Co., Inc., Baltimore (1924)

    MATH  Google Scholar 

  26. McCann, K., Hastings, A.: Re-evaluating the omnivory-stability relationship in food webs. Proc. Biol. Sci. 264(1385), 1249–1254 (1997)

    Article  Google Scholar 

  27. Mishra, P., Raw, S.N., Tiwari, B.: Study of a Leslie–Gower predator-prey model with prey defense and mutual interference of predators. Chaos Solitons Fractals 120, 1–16 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mishra, P., Raw, S.N., Tiwari, B.: On a cannibalistic predator-prey model with prey defense and diffusion. Appl. Math. Model. 90, 165–190 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Namba, T., Tanabe, K., Maeda, N.: Omnivory and stability of food webs. Ecol. Complex. 5, 73–85 (2008)

    Article  Google Scholar 

  30. Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspectives. Springer, New York (1980)

    MATH  Google Scholar 

  31. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

  32. Petrovskii, S., Li, B., Malchow, H.: Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex. 1, 37–47 (2004)

    Article  Google Scholar 

  33. Pimm, S.L., Lawton, J.H.: On feeding on more than one trophic level. Nature (London) 275, 542–544 (1978)

    Article  Google Scholar 

  34. Previte, J.P., Hoffman, K.A.: Period doubling cascades in a predator-prey model with a scavenger. SIAM Rev. 55(3), 523–546 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Priyadarshi, A., Gakkhar, S.: Dynamics of Leslie–Gower type generalist predator in a tri-trophic food web system. Commun. Nonlinear Sci. Numer. Simul. 18(11), 3202–3218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rao, F., Castillo-Chavez, C., Kang, Y.: Dynamics of a diffusion reaction prey–predator model with delay in prey: effects of delay and spatial components. J. Math. Anal. Appl. 461(2), 1177–1214 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Raw, S.N., Mishra, P., Tiwari, B.: Mathematical study about a predator–prey model with anti-predator behavior. Int. J. Appl. Comput. Math. 6, 68 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Riaz, S.S., Sharma, R., Bhattacharya, S.P., Ray, D.S.: Instability and pattern formation in reaction-diffusion systems: a higher order analysis. J. Chem. Phys. 126(6), 064503 (2007)

    Article  Google Scholar 

  39. Sarif Hassan, S.: Dynamics of the Previte-Hoffman food web model with small immigrations. Eur. Phys. J. Plus 133, 293 (2018)

    Article  Google Scholar 

  40. Segel, L.A., Jackson, J.L.: Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37(3), 545–559 (1972)

    Article  Google Scholar 

  41. Sen, D., Ghorai, S., Banerjee, M.: Complex dynamics of a three species prey-predator model with intraguild predation. Ecol. Complex. 34, 9–22 (2018)

    Article  Google Scholar 

  42. Tanabe, K., Namba, T.: Omnivory creates chaos in simple food web models. Ecology 86, 3411–3414 (2005)

    Article  Google Scholar 

  43. Thomas, S., Goulson, D., Holland, J.: Spatial and temporal distributions of predatory Carabidae in a winter wheat field. Asp. Appl. Biol. 62, 55–60 (2000)

    Google Scholar 

  44. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237(641), 37–72 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  45. Volterra, V.: Variazioni e fluttauazioni del numero d individui in specie animals conviventi. Mem. Acad. Lincei 2, 31–33 (1926)

    Google Scholar 

  46. Wolpert, L.: The Development of Pattern and Form in Animals. Carolina Biology Readers, vol. 1, pp. 1–16 (1977)

    Google Scholar 

Download references

Acknowledgements

This work is supported by ECR Award (File No. ECR/2017/000141), SERB-DST, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Raw.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raw, S.N., Sarangi, B.P. & Pandey, A.K. Study on the Biological Correlation of a Diffusive Food Web Model with Application. Acta Appl Math 181, 16 (2022). https://doi.org/10.1007/s10440-022-00534-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-022-00534-6

Keywords

Mathematics Subject Classification (2010)

Navigation