Skip to main content
Log in

Dynamics for a Nonlocal Reaction-Diffusion Population Model with a Free Boundary

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper we focus on a nonlocal reaction-diffusion population model. Such a model can be used to describe a single species which is diffusing, aggregating, reproducing and competing for space and resources, with the free boundary representing the expanding front. The main objective is to understand the influence of the nonlocal term in the form of an integral convolution on the dynamics of the species. Precisely, when the species successfully spreads into infinity as \(t\rightarrow \infty \), it is proved that the species stabilizes at a positive equilibrium state under rather mild conditions. Furthermore, we obtain a upper bound for the spreading of the expanding front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alfaro, M., Coville, J.: Rapid traveling waves in the nonlocal Fisher equation connect two unstable states. Appl. Math. Lett. 25(12), 2095–2099 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berestycki, H., Nadin, G., Perthame, B., Ryzhik, L.: The non-local Fisher-KPP equation: traveling waves and steady states. Nonlinearity 22(12), 2813–2844 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billingham, J.: Dynamics of a strongly nonlocal reaction-diffusion population model. Nonlinearity 17(1), 313–346 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Britton, N.F.: Aggregation and the competitive exclusion principle. J. Theor. Biol. 136(1), 57–66 (1989)

    Article  MathSciNet  Google Scholar 

  5. Britton, N.F.: Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl. Math. 50(6), 1663–1688 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bunting, G., Du, Y.H., Krakowski, K.: Spreading speed revisited: analysis of a free boundary model (special issue dedicated to H. Matano). Netw. Heterog. Media 7, 583–603 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X.F., Friedman, A.: A free boundary problem arising in a model of wound healing. SIAM J. Math. Anal. 32, 778–800 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X.F., Friedman, A.: A free boundary problem for an elliptic-hyperbolic system: an application to tumor growth. SIAM J. Math. Anal. 35, 974–986 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crank, J.: Free and Moving Boundary Problem. Clarendon Press, Oxford (1984)

    MATH  Google Scholar 

  10. Deng, K.: On a nonlocal reaction-diffusion population model. Discrete Contin. Dyn. Syst., Ser. B 9(1), 65–73 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, Y.H., Guo, Z.M.: Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, II. J. Differ. Equ. 250(12), 4336–4366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, Y.H., Liang, X.: Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 32(2), 279–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, Y.H., Lin, Z.G.: Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 42(3), 337–405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, Y.H., Lin, Z.G.: The diffusive competition model with a free boundary: invasion of a superior of inferior competitor. Discrete Contin. Dyn. Syst., Ser. B 19(10), 3105–3132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, Y.H., Lou, B.D.: Spreading and vanishing in nonlinear diffusion problems with free boundaries. J. Eur. Math. Soc. 17(10), 2673–2724 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Du, Y.H., Ma, L.: Logistic type equation on \(R^{N}\) by a squeezing method involving boundary blow-up solutions. J. Lond. Math. Soc. 64, 107–124 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Du, Y.H., Guo, Z.M., Peng, R.: A diffusive logistic model with a free boundary in time-periodic environment. J. Funct. Anal. 250, 2089–2142 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, Y.H., Wang, M.X., Zhou, M.L.: Semi-wave and spreading speed for the diffusive competition model with a free boundary. J. Math. Pures Appl. 107(3), 253–287 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fang, J., Zhao, X.Q.: Monotone wavefronts of the nonlocal Fisher-KPP equation. Nonlinearity 24(11), 3043–3054 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gourley, S.A.: Traveling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41, 272–284 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gourley, S.A., Chaplain, M.A.J., Davidson, F.A.: Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation. Dyn. Syst. 16(2), 173–192 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, J.S., Wu, C.H.: On a free boundary problem for a two-species weak competition system. J. Dyn. Differ. Equ. 24(4), 873–895 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, J.S., Wu, C.H.: Dynamics for a two-species competition-diffusion model with two free boundaries. Nonlinearity 28(1), 1–27 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hamel, F., Ryzhik, L.: On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds. Nonlinearity 27(11), 2735–2753 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Academic Press, New York (1968)

    Book  Google Scholar 

  26. Mimura, M., Yamada, Y., Yotsutani, S.: Free boundary problems for some reaction diffusion equations. Hiroshima Math. J. 17, 241–280 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rubinstein, L.I.: The Stefan Problem. Am. Math. Soc., Providence (1971)

    Google Scholar 

  28. Wang, M.X.: On some free boundary problems of the prey-predator model. J. Differ. Equ. 256(10), 3365–3394 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, M.X.: The diffusive logistic equation with a free boundary and sign-changing coefficient. J. Differ. Equ. 258(4), 1252–1266 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, M.X.: A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment. J. Funct. Anal. 270(2), 483–508 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, M.X.: Spreading and vanishing in the diffusive prey-predator model with a free boundary. Commun. Nonlinear Sci. Numer. Simul. 23, 311–327 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, M.X., Zhang, Y.: The time-periodic diffusive competition models with a free boundary and sign-changing growth rates. Z. Angew. Math. Phys. 67(5) (2016)

  33. Wang, M.X., Zhao, J.F.: Free boundary problems for a Lotka-Volterra competition system. J. Dyn. Differ. Equ. 26(3), 655–672 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, M.X., Zhao, J.F.: A free boundary problem for a predator-prey model with double free boundaries. J. Dyn. Differ. Equ. 1–23 (2015)

  35. Zhao, Y.G., Wang, M.X.: A reaction-diffusive-advection equation with mixed and free boundary conditions. J. Dyn. Differ. Equ. 1–35 (2017)

  36. Zhou, L., Zhang, S., Liu, Z.H.: A reaction-diffusive-advection equation with a free boundary and sign-changing coefficient. Acta Appl. Math. 143, 189–216 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhou, L., Zhang, S., Liu, Z.H.: A free boundary problem of a predator-prey model with advection in heterogeneous environment. Appl. Math. Comput. 289, 22–36 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the anonymous reviewers for their helpful comments and suggestions. The work is partially supported by PRC grant NSFC 11771380, 11401515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, Z. & Zhou, L. Dynamics for a Nonlocal Reaction-Diffusion Population Model with a Free Boundary. Acta Appl Math 159, 139–168 (2019). https://doi.org/10.1007/s10440-018-0188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-0188-8

Keywords

Mathematics Subject Classification

Navigation