Skip to main content
Log in

Busemann Functions and Barrier Functions

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

On a smooth, non-compact, complete, boundaryless, connected Riemannian manifold there are two kinds of functions: Busemann functions with respect to rays and barrier functions with respect to lines (if there exists at least one). In this paper we collect some known properties on Busemann functions and introduce some new fundamental properties on barrier functions. Based on these properties of barrier functions, we could define some relations on the set of lines and thus classify them. With the equivalence relation we introduced, we present a generalization of a rigidity conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akian, M., Gaubert, S., Walsh, C.: The max-plus Martin boundary. Doc. Math. 14, 195–240 (2009)

    MATH  MathSciNet  Google Scholar 

  2. Ballmann, W.: Lectures on Spaces of Nonpositive Curvature. DMV Seminar, vol. 25. Birkhäuser, Basel (1995)

    Book  MATH  Google Scholar 

  3. Bangert, V.: Minimal geodesics. Ergod. Theory Dyn. Syst. 10, 263–286 (1989)

    MATH  MathSciNet  Google Scholar 

  4. Bangert, V., Emmerich, P.: On the flatness of Riemannian cylinders without conjugate points. Commun. Anal. Geom. 19(4), 773–805 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bangert, V., Emmerich, P.: Area growth and rigidity of surface without conjugate points. J. Differ. Geom. 94(3), 367–385 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bangert, V., Gutkin, E.: Insecurity for compact surfaces of positive genus. Geom. Dedic. 146, 165–191 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Belegradek, I., Choi, E., Innami, N.: Rays and souls in von Mangoldt planes. Pac. J. Math. 259(2), 279–306 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burns, K., Knieper, G.: Rigidity of surfaces with no conjugate points. J. Differ. Geom. 34, 623–650 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Busemann, H.: The Geometry of Geodesics. Dover Publications, New York (1995)

    MATH  Google Scholar 

  10. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  11. Contreras, G.: Action potential and weak KAM solutions. Calc. Var. Partial Differ. Equ. 13(4), 427–458 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Croke, C.B.: A synthetic characterization of the hemisphere. Proc. Am. Math. Soc. 136(3), 1083–1086 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cui, X.: Locally Lipschitz graph property for lines. Proc. Am. Math. Soc. 143(10), 4423–4431 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cui, X.: Viscosity solutions, ends and ideal boundary. Ill. J. Math. 60(2), 459–480 (2016)

    MATH  Google Scholar 

  15. Eschenburg, J.: Horospheres and the stable part of the geodesic flow. Math. Z. 153, 237–251 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fathi, A.: Weak KAM theorem in Lagrangian dynamics. Preprint

  17. Fathi, A., Maderna, E.: Weak KAM theorem on non-compact manifolds. Nonlinear Differ. Equ. Appl. 14, 1–27 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gromov, M.: Hyperbolic manifolds, groups and actions. Ann. Math. Stud. 97, 183–215 (1981)

    MATH  MathSciNet  Google Scholar 

  19. Heintze, E., Im Hof, H.-C.: Geometry of horospheres. J. Differ. Geom. 12(4), 481–491 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  20. Innami, N.: Differentiability of Busemann functions and total excess. Math. Z. 180, 235–247 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ishii, H., Mitake, H.: Representation formulas for solutions of Hamilton-Jacobi equations with convex Hamiltonians. Indiana Univ. Math. J. 56(5), 2159–2184 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lions, P.L.: Generalized Solutions of Hamilton–Jacobi Equations. Pitman, London (1982)

    MATH  Google Scholar 

  23. Mantegazza, C., Mennucci, A.C.: Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47, 1–25 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Marenich, V.B.: Horofunctions, Busemann functions, and ideal boundaries of open manifolds of nonnegative curvature. Sib. Math. J. 34(5), 883–897 (1993)

    Article  MATH  Google Scholar 

  25. Mather, J.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207(2), 169–207 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mather, J.: Variational constructions of connecting orbits. Ann. Inst. Fourier 43(5), 1349–1386 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Petersen, P.: Riemannian Geometry. Springer, Berlin (2006)

    MATH  Google Scholar 

  28. Sakai, T.: Riemannian Geometry. Am. Math. Soc., Providence (1996)

    MATH  Google Scholar 

  29. Shiohama, K.: Topology of complete noncompact manifolds. In: Shiohama, K. (ed.) Geometry of Geodesics and Related Topics. Adv. Studies in Pure Math, vol. 3, pp. 423–450 (1984)

    Google Scholar 

  30. Vallani, C.: Optimal Transport, Old and New. Springer, Berlin (2008)

    Google Scholar 

  31. Wu, H.: An elementary method in the study of nonnegative curvature. Acta Math. 142(1), 57–78 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yau, S.T.: Non-existence of continuous convex functions on certain Riemannian manifolds. Math. Ann. 207(4), 269–270 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor G. Knieper for some remarks on Conjecture 7.1. We would like to thank two anonymous referees for advices and criticisms which improved the paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Cui.

Additional information

The first author is supported by the National Natural Science Foundation of China (Grants 11271181, 11571166, 11631006). Both authors are supported by the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Cheng, J. Busemann Functions and Barrier Functions. Acta Appl Math 152, 93–110 (2017). https://doi.org/10.1007/s10440-017-0114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-017-0114-5

Keywords

Mathematics Subject Classification

Navigation