Skip to main content
Log in

Soliton Solutions for a Singular Schrödinger Equation with Any Growth Exponents

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper is concerned with a kind of quasilinear Schrödinger equation with combined nonlinearities, a convex term with any growth and a singular term, in a bounded smooth domain. Multiplicity results are obtained by critical point theory together with truncation arguments and the method of upper and lower solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, R.P., Perera, K., O’Regan, D.: A variational approach to singular quasilinear elliptic problems with sign changing nonlinearities. Appl. Anal. 85, 1201–1206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bass, F.G., Nasanov, N.N.: Nonlinear electromagnetic spin waves. Phys. Rep. 189, 165–223 (1990)

    Article  Google Scholar 

  5. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I: Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  6. Brandi, H.S., Manus, C., Mainfray, G., Lehner, T., Bonnaud, G.: Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. I. Paraxial approximation. Phys. Fluids B 5, 3539–3550 (1993)

    Article  Google Scholar 

  7. Chen, X.L., Sudan, R.N.: Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse. Phys. Rev. Lett. 70, 2082–2085 (1993)

    Article  Google Scholar 

  8. Chipot, M.: Elliptic Equations: An Introductory Course. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  9. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corrêa, F.J.S.A., Figueiredo, G.M.: On an elliptic equation of p-Kirchhoff type via variational methods. Bull. Aust. Math. Soc. 74, 263–277 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Drábek, P., Hernández, J.: Existence and uniqueness of positive solutions for some quasilinear elliptic problems. Nonlinear Anal. 44, 189–204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. do Ó, J.M.B., Miyagaki, O.H., Soares, S.H.M.: Soliton solutions for quasilinear Schrödinger equations with critical growth. J. Differ. Equ. 248, 722–744 (2010)

    Article  MATH  Google Scholar 

  13. Deng, Y., Peng, S., Yan, S.: Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth. J. Differ. Equ. 258, 115–147 (2015)

    Article  MATH  Google Scholar 

  14. Fang, X.-D., Szulkin, A.: Mutiple solutions for a quasilinear Schrödinger equation. J. Differ. Equ. 254, 2015–2032 (2013)

    Article  MATH  Google Scholar 

  15. García Azorero, J.P., Peral Alonso, I., Manfredi, J.J.: Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2, 385–404 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Gasiński, L., Papageorgiou, N.S.: Nonlinear Analysis. Series in Mathematical Analysis and Applications, vol. 9. Chapman Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  17. Gasiński, L., Papageorgiou, N.S.: Nonlinear elliptic equations with singular terms and combined nonlinearities. Ann. Henri Poincaré 13, 481–512 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giacomoni, J., Schindler, I., Takáč, P.: Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 6, 117–158 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys. B 37, 83–87 (1980)

    Article  MathSciNet  Google Scholar 

  20. Litvak, A.G., Sergeev, A.M.: One dimensional collapse of plasma waves. JETP Lett. 27, 517–520 (1978)

    Google Scholar 

  21. Liu, D.: Soliton solutions for a quasilinear Schrödinger equation. Electron. J. Differ. Equ. 2013, 267 (2013)

    Article  MATH  Google Scholar 

  22. Liu, X.-Q., Liu, J.-Q., Wang, Z.-Q.: Quasilinear elliptic equations via perturbation method. Proc. Am. Math. Soc. 141, 253–263 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, X.-Q., Liu, J.-Q., Wang, Z.-Q.: Quasilinear elliptic equations with critical growth via perturbation method. J. Differ. Equ. 254, 102–124 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, J., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations. I. Proc. Am. Math. Soc. 131, 441–448 (2003)

    Article  MATH  Google Scholar 

  25. Liu, J.-Q., Wang, Z.-Q., Guo, Y.-X.: Multibump solutions for quasilinear Schrödinger equations. J. Funct. Anal. 262, 4040–4102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, J.-Q., Wang, Y., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations. II. J. Differ. Equ. 187, 473–493 (2003)

    Article  MATH  Google Scholar 

  27. Liu, J.-Q., Wang, Y., Wang, Z.-Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

    Article  MATH  Google Scholar 

  28. Liu, D., Zhao, P.: Soliton solutions for a quasilinear Schrödinger equation via Morse theory. Proc. Indian Acad. Sci. Math. Sci. 125(3), 307–321 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Makhandov, V.G., Fedyanin, V.K.: Non-linear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    Article  MathSciNet  Google Scholar 

  30. Miyajima, S., Motreanu, D., Tanaka, M.: Multiple existence results of solutions for the Neumann problems via super- and sub-solutions. J. Funct. Anal. 262, 1921–1953 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moameni, A.: Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in \(\mathbb{R}^{N}\). J. Differ. Equ. 229, 570–587 (2006)

    Article  MATH  Google Scholar 

  32. Perera, K., Zhang, Z.: Multiple positive solutions of singular p-Laplacian problems by variational methods. Bound. Value Probl. 3, 377–382 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Poppenberg, M., Schmitt, K., Wang, Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  MATH  Google Scholar 

  34. Sun, Y., Wu, S., Long, Y.: Combined effects of singular and superlinear nonlinearities in some singular boundary value problems. J. Differ. Equ. 176, 511–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, X., Zhao, L., Zhao, P.: Combined effects of singular and critical nonlinearities in elliptic problems. Nonlinear Anal. 87, 1–10 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  37. Winkert, P.: \(L^{\infty }(\varOmega)\)-estimates for nonlinear elliptic Neumann boundary value problems. Nonlinear Differ. Equ. Appl. 17, 289–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, H.: Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem. J. Differ. Equ. 189, 487–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhao, L., He, Y., Zhao, P.: The existence of three positive solutions of a singular \(p\)-Laplacian problem. Nonlinear Anal. 74, 5745–5753 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, Z.: Critical points and positive solutions of singular elliptic boundary value problems. J. Math. Anal. Appl. 302, 476–483 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, J., Tang, X., Zhang, W.: Existence of infinitely many solutions for a quasilinear elliptic equation. Appl. Math. Lett. 37, 131–135 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhao, L., Zhao, P.: The existence of threee solutions for \(p\)-Laplacian problems with critical and supercritical growth. Rocky Mt. J. Math. 44, 1383–1397 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayin Liu.

Additional information

J. Liu supported by the Scientic Research Project for Colleges and Universities in Ningxia Hui Autonomous Region (No. NGY2016135) and the Research Starting Funds for Imported Talents of Beifang University of Nationalities.

D. Liu supported by Fundamental Research Funds for Central Universities (lzujbky-2014-25).

P. Zhao supported by the NSF of China (NSFC11471147).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, D. & Zhao, P. Soliton Solutions for a Singular Schrödinger Equation with Any Growth Exponents. Acta Appl Math 148, 179–199 (2017). https://doi.org/10.1007/s10440-016-0084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-016-0084-z

Keywords

Mathematics Subject Classification

Navigation