Skip to main content

Advertisement

Log in

3D Bioprinting of Hyaline Cartilage Using Nasal Chondrocytes

  • S.I. : Bioengineering and Enabling Technologies II
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Due to the limited self-repair capacity of the hyaline cartilage, the repair of cartilage remains an unsolved clinical problem. Tissue engineering strategy with 3D bioprinting technique has emerged a new insight by providing patient’s personalized cartilage grafts using autologous cells for hyaline cartilage repair and regeneration. In this review, we first summarized the intrinsic property of hyaline cartilage in both maxillofacial and orthopedic regions to establish the requirement for 3D bioprinting cartilage tissue. We then reviewed the literature and provided opinion pieces on the selection of bioprinters, bioink materials, and cell sources. This review aims to identify the current challenges for hyaline cartilage bioprinting and the directions for future clinical development in bioprinted hyaline cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Adamiak, K., and A. J. Sionkowska. Current methods of collagen cross-linking. Int. J. Biol Macromol. 161:550–560, 2020.

    Article  CAS  PubMed  Google Scholar 

  2. Aksoy, F., Y. Yildirim, H. Demirhan, O. Özturan, and S. Solakoglu. Structural characteristics of septal cartilage and mucoperichondrium. J. Laryngol. Otol. 126(1):38–42, 2012.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, K., M. Henneberg, and R. Norris. Anatomy of the nasal profile. J. Anatomy. 213(2):210–216, 2008.

    Article  CAS  Google Scholar 

  4. Andrews, S. H., M. Kunze, A. Mulet-Sierra, L. Williams, K. Ansari, M. Osswald, and A. B. Adesida. Strategies to mitigate variability in engineering human nasal cartilage. Sci. Rep. 7(1):6490, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Apelgren, P., M. Amoroso, A. Lindahl, C. Brantsing, N. Rotter, P. Gatenholm, and L. J. P. O. Kölby. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS ONE. 12(12):e0189428, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Apelgren, P., M. Amoroso, K. Säljö, A. Lindahl, C. Brantsing, L. S. Orrhult, K. Markstedt, P. Gatenholm, and L. Kölby. Long-term in vivo integrity and safety of 3D-bioprinted cartilaginous constructs. J. Biomed. Mater. Res. B. 109(1):126–136, 2021.

    Article  CAS  Google Scholar 

  7. Apelgren, P., M. Amoroso, K. Säljö, M. Montelius, A. Lindahl, L. S. Orrhult, P. Gatenholm, and L. J. B. Kölby. Vascularization of tissue engineered cartilage-Sequential in vivo MRI display functional blood circulation. Biomaterials.276:121002, 2021.

    Article  CAS  PubMed  Google Scholar 

  8. Apelgren, P., E. Karabulut, M. Amoroso, A. Mantas, H. C. M. Ávila, L. Kölby, T. Kondo, G. Toriz, and P. Gatenholm. In vivo human cartilage formation in three-dimensional bioprinted constructs with a novel bacterial nanocellulose bioink. ACS Biomater. Sci. Eng. 5(5):2482–2490, 2019.

    Article  CAS  PubMed  Google Scholar 

  9. Ashrafi, A. T. Management of upper lateral cartilages (ULCs) in rhinoplasty. World J. Plast. Surg. 3(2):129, 2014.

    PubMed  PubMed Central  Google Scholar 

  10. Aung, A., G. Gupta, G. Majid, and S. J. A. Varghese. Osteoarthritic chondrocyte–secreted morphogens induce chondrogenic differentiation of human mesenchymal stem cells. Rheumatism. 63(1):148–158, 2011.

    Article  Google Scholar 

  11. Ávila, H. M., S. Schwarz, N. Rotter, and P. Gatenholm. 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting. 1:22–35, 2016.

    Article  Google Scholar 

  12. Awwad, H. A., L. Thiagarajan, J. M. Kanczler, M. H. Amer, G. Bruce, S. Lanham, R. M. Rumney, R. O. Oreffo, and J. E. Dixon. Genetically-programmed, mesenchymal stromal cell-laden & mechanically strong 3D bioprinted scaffolds for bone repair. J. Control. Release. 325:335–346, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bader, D., and G. J. B. Kempson. The short-term compressive properties of adult human articular cartilage. Engineering. 4(3):245–256, 1994.

    CAS  Google Scholar 

  14. De Bari, C., F. Dell’Accio, and F. P. Luyten. Failure of in vitro–differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum. 50(1):142–150, 2004.

    Article  PubMed  Google Scholar 

  15. Bornes, T. D., A. B. Adesida, and N. M. Jomha. Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Therapy. 16(5):1–19, 2014.

    Google Scholar 

  16. Bornes, T. D., A. B. Adesida, and N. M. Jomha. Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Res Therapy. 16(5):432, 2014.

    Article  Google Scholar 

  17. Boschetti, F., G. Pennati, F. Gervaso, G. M. Peretti, and G. J. B. Dubini. Biomechanical properties of human articular cartilage under compressive loads. Biorheology. 41(3–4):159–166, 2004.

    PubMed  Google Scholar 

  18. Bottini, D., P. Gentile, A. Donfrancesco, L. Fiumara, and V. J. Cervelli. Augmentation rhinoplasty with autologous grafts. Aesthet. Plast. Surg. 32(1):136–142, 2008.

    Article  CAS  Google Scholar 

  19. Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. J. Peterson. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. 331(14):889–895, 1994.

    Article  CAS  Google Scholar 

  20. Caffrey, J. P., A. M. Kushnaryov, M. S. Reuther, V. W. Wong, K. K. Briggs, K. Masuda, R. L. Sah, and D. J. O. Watson. Flexural properties of native and tissue-engineered human septal cartilage. N. Surgery. 148(4):576–581, 2013.

    Google Scholar 

  21. Campos, D. F. D., M. Rohde, M. Ross, P. Anvari, A. Blaeser, M. Vogt, C. Panfil, G. H. F. Yam, J. S. Mehta, and H. J. Fischer. Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes. J. Biomed. Mater. Res. A. 107(9):1945–1953, 2019.

    Article  Google Scholar 

  22. Candrian, C., D. Vonwil, A. Barbero, E. Bonacina, S. Miot, J. Farhadi, D. Wirz, S. Dickinson, A. Hollander, and M. J. A. Jakob. Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading. Arthritis Rheum. 58(1):197–208, 2008.

    Article  CAS  PubMed  Google Scholar 

  23. Cervelli, V., D. J. Bottini, P. Gentile, L. Fantozzi, A. Arpino, C. Cannatà, L. Fiumara, and C. U. Casciani. Reconstruction of the nasal dorsum with autologous rib cartilage. Ann. Plast. Surg. 56(3):256–262, 2006.

    Article  CAS  PubMed  Google Scholar 

  24. Chen, P., L. Zheng, Y. Wang, M. Tao, Z. Xie, C. Xia, C. Gu, J. Chen, P. Qiu, and S. J. T. Mei. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 9(9):2439, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choe, R., E. Devoy, B. Kuzemchak, M. Sherry, E. Jabari, J. D. Packer, and J. P. J. B. Fisher. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering. Biofabrication. 14(2):025015, 2022.

    Article  Google Scholar 

  26. Chua, K., B. Aminuddin, N. Fuzina, and B. Ruszymah. Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. Eur. Cell Mater. 9(9):58–67, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Cohen, N. P., R. J. Foster, and V. C. J. Mow. Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther. 28(4):203–215, 1998.

    Article  CAS  PubMed  Google Scholar 

  28. Compaan, A. M., K. Christensen, and Y. Huang. Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater. Sci. Eng. 3(8):1519–1526, 2017.

    Article  CAS  PubMed  Google Scholar 

  29. Cooke, M. E., and D. H. Rosenzweig. The rheology of direct and suspended extrusion bioprinting. APL Bioeng.5(1):011502, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Critchley, S., E. J. Sheehy, G. Cunniffe, P. Diaz-Payno, S. F. Carroll, O. Jeon, E. Alsberg, P. A. Brama, and D. J. Kelly. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater. 113:130–143, 2020.

    Article  CAS  PubMed  Google Scholar 

  31. Cui, X., D. Dean, Z. M. Ruggeri, and T. Boland. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol. Bioeng. 106(6):963–969, 2010.

    Article  CAS  PubMed  Google Scholar 

  32. Daly, A. C., S. E. Critchley, E. M. Rencsok, and D. J. Kelly. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication. 8(4):045002, 2016.

    Article  PubMed  Google Scholar 

  33. Daly, A. C., F. E. Freeman, T. Gonzalez-Fernandez, S. E. Critchley, J. Nulty, and D. J. Kelly. 3D bioprinting for cartilage and osteochondral tissue engineering. Adv. Healthc. Mater. 6(22):1700298, 2017.

    Article  Google Scholar 

  34. Daly, A. C., and D. J. J. B. Kelly. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials. 197:194–206, 2019.

    Article  CAS  PubMed  Google Scholar 

  35. Dash, S., and P. A. J. B. Trainor. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone. 137:115409, 2020.

    Article  CAS  PubMed  Google Scholar 

  36. Davoodi, E., E. Sarikhani, H. Montazerian, S. Ahadian, M. Costantini, W. Swieszkowski, S. M. Willerth, K. Walus, M. Mofidfar, and E. Toyserkani. Extrusion and microfluidic-based bioprinting to fabricate biomimetic tissues and organs. Adv. Mater. Technol. 5(8):1901044, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Derakhshanfar, S., R. Mbeleck, K. Xu, X. Zhang, W. Zhong, and M. J. B. Xing. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact. Mater. 3(2):144–156, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Diamantides, N., L. Wang, T. Pruiksma, J. Siemiatkoski, C. Dugopolski, S. Shortkroff, S. Kennedy, and L. J. J. B. Bonassar. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Biofabrication. 9(3):034102, 2017.

    Article  PubMed  Google Scholar 

  39. Dufour, A., X. B. Gallostra, C. O’keeffe, K. Eichholz, S. Von Euw, O. Garcia, and D. J. B. Kelly. Integrating melt electrowriting and inkjet bioprinting for engineering structurally organized articular cartilage. Biomaterials. 283:121405, 2022.

    Article  CAS  PubMed  Google Scholar 

  40. Eyre, D. J. A. R. Articular cartilage and changes in arthritis: collagen of articular cartilage. Therapy. 4(1):1–6, 2001.

    Google Scholar 

  41. Farhadi, J., I. Fulco, S. Miot, D. Wirz, M. Haug, S. C. Dickinson, A. P. Hollander, A. U. Daniels, G. Pierer, and M. J. Heberer. Precultivation of engineered human nasal cartilage enhances the mechanical properties relevant for use in facial reconstructive surgery. Ann. Surg. 244(6):978, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fatimi, A., O. V. Okoro, D. Podstawczyk, J. Siminska-Stanny, and A. J. G. Shavandi. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review. Gels. 8(3):179, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ferré, F. C., H. Larjava, L.-S. Loison-Robert, T. Berbar, G. R. Owen, A. Berdal, H. Chérifi, B. Gogly, L. Häkkinen, and B. P. Fournier. Formation of cartilage and synovial tissue by human gingival stem cells. Stem Cells Dev. 23(23):2895–2907, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fox, A. J. S., A. Bedi, and S. A. Rodeo. The basic science of articular cartilage: structure, composition, and function. Sports Health. 1(6):461–468, 2009.

    Article  Google Scholar 

  45. Frank, R. M., E. J. Cotter, I. Nassar, B. J. S. M. Cole, and A. Review. Failure of bone marrow stimulation techniques. Sports Med. Arthrosc. Rev. 25(1):2–9, 2017.

    Article  PubMed  Google Scholar 

  46. Franz, T., E. Hasler, R. Hagg, C. Weiler, R. Jakob, and P. J. O. Mainil-Varlet. In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Cartilage. 9(6):582–592, 2001.

    Article  CAS  Google Scholar 

  47. Fulco, I., S. Miot, M. D. Haug, A. Barbero, A. Wixmerten, S. Feliciano, F. Wolf, G. Jundt, A. Marsano, and J. Farhadi. Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet. 384(9940):337–346, 2014.

    Article  CAS  PubMed  Google Scholar 

  48. Gao, Y., S. Liu, J. Huang, W. Guo, J. Chen, L. Zhang, B. Zhao, J. Peng, A. Wang, and Y. Wang, The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. BioMed. Res. Int. 2014 (2014).

  49. Gebeyehu, A., S. K. Surapaneni, J. Huang, A. Mondal, V. Z. Wang, N. F. Haruna, A. Bagde, P. Arthur, S. Kutlehria, and N. Patel. Polysaccharide hydrogel based 3D printed tumor models for chemotherapeutic drug screening. Sci. Rep. 11(1):1–15, 2021.

    Article  Google Scholar 

  50. Ghadially, F. N. Structure and function of articular cartilage. Clin. Rheum. Dis. 7(1):3–28, 1981.

    Article  Google Scholar 

  51. Glasgold, M. J., Y. P. Kato, D. Christiansen, J. A. Hauge, A. I. Glasgold, and F. H. Silver. Mechanical properties of Septai cartilage homografts. Otolaryngology. 99(4):374–379, 1988.

    Article  CAS  Google Scholar 

  52. Gotterbarm, T., W. Richter, M. Jung, S. B. Vilei, P. Mainil-Varlet, T. Yamashita, and S. J. J. B. Breusch. An in vivo study of a growth-factor enhanced, cell free, two-layered collagen–tricalcium phosphate in deep osteochondral defects. Biomaterials. 27(18):3387–3395, 2006.

    Article  CAS  PubMed  Google Scholar 

  53. Grad, S., D. Eglin, M. Alini, and M. J. Stoddart. Physical stimulation of chondrogenic cells in vitro: a review. Relat. Res. 469(10):2764–2772, 2011.

    Google Scholar 

  54. Grässel, S., and A. Aszódi. Cartilage. Berlin: Springer, 2016.

    Book  Google Scholar 

  55. Griffin, M., Y. Premakumar, A. Seifalian, M. Szarko, and P. Butler. Biomechanical characterisation of the human nasal cartilages; implications for tissue engineering. J. Mater. Sci. 27(1):11, 2016.

    CAS  Google Scholar 

  56. Gu, Z., J. Fu, H. Lin, and Y. He. Development of 3D bioprinting: From printing methods to biomedical applications. Asian J. Pharm. Sci. 15(5):529–557, 2020.

    Article  PubMed  Google Scholar 

  57. Guo, J., A. E. N. Asli, K. R. Williams, P. L. Lai, X. Wang, R. Montazami, and N. N. Hashemi. Viability of neural cells on 3D printed graphene bioelectronics. Biosensors. 9(4):112, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gupta, S., and A. Bit. 3D bioprinting in tissue engineering and regenerative medicine. Cell Tissue Bank. 23:1–14, 2021.

    Google Scholar 

  59. Hakobyan, D., O. Kerouredan, M. Remy, N. Dusserre, C. Medina, R. Devillard, J.-C. Fricain, and H. Oliveira. Laser-Assisted Bioprinting for Bone Repair, 3D Bioprinting. Berlin: Springer, pp. 135–144, 2020.

    Google Scholar 

  60. Hall, B. K., and J. A. Gillis. Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues. J. Anatomy. 222(1):19–31, 2013.

    Article  CAS  Google Scholar 

  61. Hauptstein, J., T. Böck, M. Bartolf-Kopp, L. Forster, P. Stahlhut, A. Nadernezhad, G. Blahetek, A. Zernecke-Madsen, R. Detsch, and T. J. Jüngst. Hyaluronic acid-based bioink composition enabling 3d bioprinting and improving quality of deposited cartilaginous extracellular matrix. Adv. Healthc. Mater. 9(15):2000737, 2020.

    Article  CAS  Google Scholar 

  62. Hiller, T., J. Berg, L. Elomaa, V. Röhrs, I. Ullah, K. Schaar, A.-C. Dietrich, M. A. Al-Zeer, A. Kurtz, and A. C. Hocke. Generation of a 3D liver model comprising human extracellular matrix in an alginate/gelatin-based bioink by extrusion bioprinting for infection and transduction studies. Int. J. Mol. Sci. 19(10):3129, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Homicz, M. R., K. B. McGowan, L. M. Lottman, G. Beh, R. L. Sah, and D. Watson. A compositional analysis of human nasal septal cartilage. Archiv. Fac. Plast. Surg. 5(1):53–58, 2003.

    Article  Google Scholar 

  64. Hong, H., Y. B. Seo, J. S. Lee, Y. J. Lee, H. Lee, O. Ajiteru, M. T. Sultan, O. J. Lee, S. H. Kim, and C. H. J. B. Park. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials. 232:119679, 2020.

    Article  CAS  PubMed  Google Scholar 

  65. Huang, Y., X. Li, A. J. Poudel, W. Zhang, and L. J. Xiao. Hydrogel-based bioinks for 3D bioprinting articular cartilage: a comprehensive review with focus on mechanical reinforcement. Appl. Mater. Today. 29:101668, 2022.

    Article  Google Scholar 

  66. Jia, L., Y. Hua, J. Zeng, W. Liu, D. Wang, G. Zhou, X. Liu, and H. J. Jiang. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix. Bioact. Mater. 16:66–81, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jiao, A., N. E. Trosper, H. S. Yang, J. Kim, J. H. Tsui, S. D. Frankel, C. E. Murry, and D.-H. Kim. Thermoresponsive nanofabricated substratum for the engineering of three-dimensional tissues with layer-by-layer architectural control. ACS nano. 8(5):4430–4439, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jodat, Y. A., K. Kiaee, D. V. Jarquin, R. L. Hernández, et al. A 3D-printed hybrid nasal cartilage with functional electronic olfaction. Adv. Sci. 7(5):1901878, 2020.

    Article  CAS  Google Scholar 

  69. Jurvelin, J., M. Buschmann, and E. J. Hunziker. Mechanical anisotropy of the human knee articular cartilage in compression. J. Eng. Med. H. 217(3):215–219, 2003.

    Article  CAS  Google Scholar 

  70. Kafienah, W. E., M. Jakob, O. Démarteau, A. Frazer, M. D. Barker, I. Martin, and A. P. Hollander. Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Eng. 8(5):817–826, 2002.

    Article  CAS  PubMed  Google Scholar 

  71. Kawecki, F., W. P. Clafshenkel, F. A. Auger, J.-M. Bourget, J. Fradette, and R. Devillard. Self-assembled human osseous cell sheets as living biopapers for the laser-assisted bioprinting of human endothelial cells. Biofabrication.10(3):035006, 2018.

    Article  CAS  PubMed  Google Scholar 

  72. Keriquel, V., H. Oliveira, M. Rémy, S. Ziane, S. Delmond, B. Rousseau, S. Rey, S. Catros, J. Amédée, and F. Guillemot. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci. Rep. 7(1):1–10, 2017.

    Article  CAS  Google Scholar 

  73. Kérourédan, O., J.-M. Bourget, M. Rémy, S. Crauste-Manciet, J. Kalisky, S. Catros, N. B. Thébaud, and R. Devillard. Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting. J. Mater. Sci. 30(2):28, 2019.

    Google Scholar 

  74. Kesti, M., C. Eberhardt, G. Pagliccia, D. Kenkel, D. Grande, A. Boss, and M. J. Zenobi-Wong. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv. Funct. Mater. 25(48):7406–7417, 2015.

    Article  Google Scholar 

  75. Kheir, E., and D. J. O. Shaw. Hyaline articular cartilage. Trauma. 23(6):450–455, 2009.

    Google Scholar 

  76. Kim, S.H., D.Y. Kim, T.H. Lim, and C.H. Park, Silk fibroin bioinks for digital light processing (DLP) 3D bioprinting. Adv. Tissue Eng. Regener. Med. 53–66 (2020).

  77. Kim, W., and G. J. B. Kim. Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration. Biofabrication. 12(1):015007, 2019.

    Article  PubMed  Google Scholar 

  78. Koch, L., O. Brandt, A. Deiwick, and B. Chichkov, Laser-assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: a parametric study. Int. J. Bioprint. 3(1) (2017).

  79. Koch, L., A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, and P. M. Vogt. Skin tissue generation by laser cell printing. Biotechnol. Bioeng. 109(7):1855–1863, 2012.

    Article  CAS  PubMed  Google Scholar 

  80. Kundu, J., J. H. Shim, J. Jang, S. W. Kim, and D. W. Cho. An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J. Tissue Eng. Regener. Med. 9(11):1286–1297, 2015.

    Article  CAS  Google Scholar 

  81. Lam, T., T. Dehne, J. P. Krüger, S. Hondke, M. Endres, A. Thomas, R. Lauster, M. Sittinger, and L. J. Kloke. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. J. Biomed. Mater. Res. B. 107(8):2649–2657, 2019.

    Article  CAS  Google Scholar 

  82. Lan, X., Y. Liang, E. J. Erkut, M. Kunze, A. Mulet-Sierra, T. Gong, M. Osswald, K. Ansari, H. Seikaly, and Y. J. Boluk. Bioprinting of human nasoseptal chondrocytes-laden collagen hydrogel for cartilage tissue engineering. FASEB J. 35(3):e21191, 2021.

    Article  CAS  PubMed  Google Scholar 

  83. Lan, X., Y. Liang, M. Vyhlidal, E. J. Erkut, M. Kunze, A. Mulet-Sierra, M. Osswald, K. Ansari, H. Seikaly, and Y. J. Boluk. In vitro maturation and in vivo stability of bioprinted human nasal cartilage. J. Tissue Eng. 13:20417314221086370, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lavernia, L., W. E. Brown, B. J. Wong, J. C. Hu, and K. A. Athanasiou. Toward tissue-engineering of Nasal Cartilages. Acta Biomater. 88:42–56, 2019.

    Article  CAS  PubMed  Google Scholar 

  85. Lawlor, K. T., J. M. Vanslambrouck, J. W. Higgins, A. Chambon, K. Bishard, D. Arndt, P. X. Er, S. B. Wilson, S. E. Howden, and K. S. Tan. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat. Mater. 20(2):260–271, 2021.

    Article  CAS  PubMed  Google Scholar 

  86. Lee, A., A. Hudson, D. Shiwarski, J. Tashman, T. Hinton, S. Yerneni, J. Bliley, P. Campbell, and A. Feinberg. 3D bioprinting of collagen to rebuild components of the human heart. Science. 365(6452):482–487, 2019.

    Article  CAS  PubMed  Google Scholar 

  87. Lee, W., J. Pinckney, V. Lee, J.-H. Lee, K. Fischer, S. Polio, J.-K. Park, and S.-S.J.N. Yoo. Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport. 20(8):798–803, 2009.

    Article  PubMed  Google Scholar 

  88. Lee, Y.-B., S. Polio, W. Lee, G. Dai, L. Menon, R. S. Carroll, and S.-S. Yoo. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol. 223(2):645–652, 2010.

    Article  CAS  PubMed  Google Scholar 

  89. Levingstone, T. J., A. Ramesh, R. T. Brady, P. A. Brama, C. Kearney, J. P. Gleeson, and F. J. J. B. O’Brien. Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials. 87:69–81, 2016.

    Article  CAS  PubMed  Google Scholar 

  90. Li, T., S. Chen, and M. Pei. Contribution of neural crest-derived stem cells and nasal chondrocytes to articular cartilage regeneration. Cell. Mol. Life Sci. 77(23):4847–4859, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, W., M. Wang, H. Ma, F.A. Chapa-Villarreal, A.O. Lobo, and Y.S.J. Zhang, Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. Iscience (2023).

  92. Lim, M. H., J. H. Jeun, S. H. Park, W. Lee, S. H. Park, M. Y. Kwon, S. H. Hwang, and S. W. Kim. Evaluation of polycaprolactone-associated human nasal chondrocytes as a therapeutic agent for cartilage repair. Tissue Eng. Regener. Med. 16(6):605–614, 2019.

    Article  Google Scholar 

  93. Liu, J. A., and M. J. Cheung. Neural crest stem cells and their potential therapeutic applications. Dev. Biol. 419(2):199–216, 2016.

    Article  CAS  PubMed  Google Scholar 

  94. Liu, Y., G. Zhou, and Y. J. E. Cao. Recent progress in cartilage tissue engineering—our experience and future directions. Engineering. 3(1):28–35, 2017.

    Article  CAS  Google Scholar 

  95. Mandelli, J. S., J. Koepp, A. Hama, S. Sanaur, G. A. Rae, and C. R. Rambo. Cell viability and cytotoxicity of inkjet-printed flexible organic electrodes on parylene C. Biomed. Microdev. 23(1):1–12, 2021.

    Article  Google Scholar 

  96. Mandrycky, C., Z. Wang, K. Kim, and D.-H. Kim. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34(4):422–434, 2016.

    Article  CAS  PubMed  Google Scholar 

  97. Markstedt, K., A. Mantas, I. Tournier, H. C. M. Ávila, D. Hägg, and P. Gatenholm. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 16(5):1489–1496, 2015.

    Article  CAS  PubMed  Google Scholar 

  98. Masaeli, E., V. Forster, S. Picaud, F. Karamali, M. H. Nasr-Esfahani, and C. Marquette. Tissue engineering of retina through high resolution 3-dimensional inkjet bioprinting. Biofabrication.12(2):025006, 2020.

    Article  CAS  PubMed  Google Scholar 

  99. Maxson, E. L., M. D. Young, C. Noble, J. L. Go, B. Heidari, R. Khorramirouz, D. W. Morse, and A. J. B. Lerman. In vivo remodeling of a 3D-Bioprinted tissue engineered heart valve scaffold. Bioprinting. 16:e00059, 2019.

    Article  Google Scholar 

  100. Mayo, V., Y. Sawatari, C.-Y.C. Huang, and F. J. Garcia-Godoy. Neural crest-derived dental stem cells—where we are and where we are going. J. Dent. 42(9):1043–1051, 2014.

    Article  PubMed  Google Scholar 

  101. Migliorini, F., N. Maffulli, A. Baroncini, J. Eschweiler, M. Knobe, M. Tingart, and H. J. Schenker. Allograft versus autograft osteochondral transplant for chondral defects of the talus: systematic review and meta-analysis. Am. J. Sports Med. 50:3447–3455, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Moldovan, N. I. Three-dimensional bioprinting of anatomically realistic tissue constructs for disease modeling and drug testing. Tissue Eng. C. 27(3):225–231, 2021.

    Article  CAS  Google Scholar 

  103. Moshaverinia, A., X. Xu, C. Chen, K. Akiyama, M. L. Snead, and S. J. A. B. Shi. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomater. 9(12):9343–9350, 2013.

    Article  CAS  PubMed  Google Scholar 

  104. Moxon, S. R., M. J. Ferreira, P. D. Santos, B. Popa, A. Gloria, R. Katsarava, D. Tugushi, A. C. Serra, N. M. Hooper, and S. J. J. P. Kimber. A Preliminary evaluation of the pro-chondrogenic potential of 3D-bioprinted poly (ester urea) scaffolds. Polymers. 12(7):1478, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mumme, M., A. Barbero, S. Miot, A. Wixmerten, S. Feliciano, F. Wolf, A. M. Asnaghi, D. Baumhoer, O. Bieri, and M. Kretzschmar. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet. 388(10055):1985–1994, 2016.

    Article  CAS  PubMed  Google Scholar 

  106. Mumme, M., A. Steinitz, K. M. Nuss, K. Klein, S. Feliciano, P. Kronen, M. Jakob, B. von Rechenberg, I. Martin, and A. J. Barbero. Regenerative potential of tissue-engineered nasal chondrocytes in goat articular cartilage defects. Tissue Eng. A. 22(21–22):1286–1295, 2016.

    Article  CAS  Google Scholar 

  107. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nature biotechnology. 32(8):773, 2014.

    Article  CAS  PubMed  Google Scholar 

  108. Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A. 101(1):272–284, 2013.

    Article  PubMed  Google Scholar 

  109. Narayanan, L. K., P. Huebner, M. B. Fisher, J. T. Spang, B. Starly, and R. A. Shirwaiker. 3D-bioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater. Sci. Eng. 2(10):1732–1742, 2016.

    Article  CAS  PubMed  Google Scholar 

  110. Neuman, M. K., K. K. Briggs, K. Masuda, R. L. Sah, and D. J. T. L. Watson. A compositional analysis of cadaveric human nasal septal cartilage. Laryngoscope. 123(9):2120–2124, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nguyen, D., D. A. Hägg, A. Forsman, J. Ekholm, P. Nimkingratana, C. Brantsing, T. Kalogeropoulos, S. Zaunz, S. Concaro, and M. J. Brittberg. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci. Rep. 7(1):1–10, 2017.

    Google Scholar 

  112. Pareek, A., P. J. Reardon, T. G. Maak, B. A. Levy, M. J. Stuart, A. J. Krych, and R. Surgery. Long-term outcomes after osteochondral autograft transfer: a systematic review at mean follow-up of 10.2 years. Arthroscopy. 32(6):1174–1184, 2016.

    Article  PubMed  Google Scholar 

  113. Pelttari, K., M. Mumme, A. Barbero, and I. J. Martin. Nasal chondrocytes as a neural crest-derived cell source for regenerative medicine. Curr. Opin. Biotechnol. 47:1–6, 2017.

    Article  CAS  PubMed  Google Scholar 

  114. Pelttari, K., B. Pippenger, M. Mumme, S. Feliciano, C. Scotti, P. Mainil-Varlet, A. Procino, B. Von Rechenberg, T. Schwamborn, and M. J. Jakob. Adult human neural crest–derived cells for articular cartilage repair. Sci. Transist. Med. 6(251):251ra119, 2014.

    Google Scholar 

  115. Pelttari, K., A. Winter, E. Steck, K. Goetzke, T. Hennig, B. G. Ochs, T. Aigner, and W. J. A. Richter. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Rheumatology. 54(10):3254–3266, 2006.

    CAS  Google Scholar 

  116. Perez-Valle, A., C. Del Amo, and I. J. Andia. Overview of current advances in extrusion bioprinting for skin applications. Int. J. Mol. 21(18):6679, 2020.

    Article  CAS  Google Scholar 

  117. Popko, M., R. Bleys, J. De Groot, and E. H. J. R. Huizing. Histological structure of the nasal cartilages and their perichondrial envelope I. The septal and lobular cartilage. Rhinology. 45(2):148, 2007.

    PubMed  Google Scholar 

  118. Rahman, S., A. R. A. Szojka, Y. Liang, M. Kunze, V. Goncalves, A. M. Sierra, N. M. Jomha, and A. B. Adesida. Inability of low oxygen tension to induce chondrogenesis in human infrapatellar fat pad-mesenchymal stem cells. Front. Cell Dev. Biol. 9:1780, 2021.

    Article  Google Scholar 

  119. Rastogi, P., and B. J. B. Kandasubramanian. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication.11(4):042001, 2019.

    Article  CAS  PubMed  Google Scholar 

  120. Read-Fuller, A. M., D. M. Yates, A. Radwan, A. M. Schrodt, and R. A. Finn. The use of allogeneic cartilage for grafting in functional and reconstructive rhinoplasty. J. Oral Maxillofac. Surg. 76(7):1560, 2018.

    Article  Google Scholar 

  121. Ren, X., F. Wang, C. Chen, X. Gong, L. Yin, and L. J. B. Yang. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet. 17:1–10, 2016.

    Google Scholar 

  122. Richmon, J. D., A. B. Sage, V. W. Wong, A. C. Chen, C. Pan, R. L. Sah, and D. J. Watson. Tensile biomechanical properties of human nasal septal cartilage. Am. J. Rhinol. 19(6):617–622, 2005.

    Article  PubMed  Google Scholar 

  123. Richmon, J. D., A. Sage, V. W. Wong, A. C. Chen, R. L. Sah, and D. J. Watson. Compressive biomechanical properties of human nasal septal cartilage. Am. J. Rhinol. 20(5):496–501, 2006.

    Article  PubMed  Google Scholar 

  124. Rotter, N., L. J. Bonassar, G. Tobias, M. Lebl, A. K. Roy, and C. A. J. B. Vacanti. Age dependence of biochemical and biomechanical properties of tissue-engineered human septal cartilage. Biomaterials. 23(15):3087–3094, 2002.

    Article  CAS  PubMed  Google Scholar 

  125. Rotter, N., G. Tobias, M. Lebl, A. K. Roy, M. C. Hansen, C. A. Vacanti, and L. J. Bonassar. Age-related changes in the composition and mechanical properties of human nasal cartilage. Archiv. Biochem. Biophys. 403(1):132–140, 2002.

    Article  CAS  Google Scholar 

  126. Ruiz-Cantu, L., A. Gleadall, C. Faris, J. Segal, K. Shakesheff, and J. J. Yang. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Mater. Sci. Eng. C. 109:110578, 2020.

    Article  CAS  Google Scholar 

  127. Sajjadian, A., R. Rubinstein, and N. J. P. Naghshineh. Current status of grafts and implants in rhinoplasty: part I. Autologous grafts. Plast Reconstruct. Surg. 125(2):40e–49e, 2010.

    Article  Google Scholar 

  128. Salamone, M., S. Rigogliuso, A. Nicosia, M. Tagliavia, S. Campora, P. Cinà, C. Bruno, and G. J. C. Ghersi. Neural crest-derived chondrocytes isolation for tissue engineering in regenerative medicine. Cells. 9(4):962, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Salinas, E. Y., J. C. Hu, and K. J. Athanasiou. A guide for using mechanical stimulation to enhance tissue-engineered articular cartilage properties. Tissu Eng. B. 24(5):345–358, 2018.

    Article  Google Scholar 

  130. Sánchez, E. M., J. C. Gómez-Blanco, E. L. Nieto, J. G. Casado, A. Macías-García, M. A. D. Díez, J. P. Carrasco-Amador, D. T. Martín, F. M. Sánchez-Margallo, and J. B. Pagador. Hydrogels for bioprinting: a systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Front. Bioeng. Biotechnol. 8:776, 2020.

    Article  Google Scholar 

  131. Sayed, K. E., U. Marzahn, T. John, M. Hoyer, H. Zreiqat, A. Witthuhn, B. Kohl, A. Haisch, and G. J. Schulze-Tanzil. PGA-associated heterotopic chondrocyte cocultures: implications of nasoseptal and auricular chondrocytes in articular cartilage repair. J. Tissue Eng. Regener. Med. 7(1):61–72, 2013.

    Article  Google Scholar 

  132. Schipani, R., S. Scheurer, R. Florentin, S. E. Critchley, and D. J. J. B. Kelly. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Biofabrication. 12(3):035011, 2020.

    Article  CAS  PubMed  Google Scholar 

  133. Schwarz, S., S. Kuth, T. Distler, C. Gögele, K. Stölzel, R. Detsch, A. R. Boccaccini, and G. Schulze-Tanzil. 3D printing and characterization of human nasoseptal chondrocytes laden dual crosslinked oxidized alginate-gelatin hydrogels for cartilage repair approaches. Mater. Sci. Eng. C. 116:111189, 2020.

    Article  CAS  Google Scholar 

  134. Scotti, C., A. Osmokrovic, F. Wolf, S. Miot, G. M. Peretti, A. Barbero, and I. Martin. Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1β and low oxygen. Tissue Eng. Part A. 18(3–4):362–372, 2012.

    Article  CAS  PubMed  Google Scholar 

  135. Shafiee, A., M. Kabiri, N. Ahmadbeigi, S. O. Yazdani, M. Mojtahed, S. Amanpour, and M. J. S. C. Soleimani. Nasal septum-derived multipotent progenitors: a potent source for stem cell-based regenerative medicine. Stem Cells Dev. 20(12):2077–2091, 2011.

    Article  CAS  PubMed  Google Scholar 

  136. Sharpe, P. T. J. D. Dental mesenchymal stem cells. Development. 143(13):2273–2280, 2016.

    Article  CAS  PubMed  Google Scholar 

  137. Shepherd, D., and B. J. R. Seedhom. The “instantaneous” compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology. 38(2):124–132, 1999.

    Article  CAS  PubMed  Google Scholar 

  138. Shi, L., Y. Hu, M. W. Ullah, H. Ou, W. Zhang, L. Xiong, and X. Zhang. Cryogenic free-form extrusion bioprinting of decellularized small intestinal submucosa for potential applications in skin tissue engineering. Biofabrication.11(3):035023, 2019.

    Article  CAS  PubMed  Google Scholar 

  139. Shim, J.-H., J. Y. Kim, M. Park, J. Park, and D.-W.J.B. Cho. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication.3(3):034102, 2011.

    Article  PubMed  Google Scholar 

  140. Song, K., A. M. Compaan, W. Chai, and Y. J. Huang. Injectable gelatin microgel-based composite ink for 3D bioprinting in air. Interfaces. 12(20):22453–22466, 2020.

    CAS  Google Scholar 

  141. Steinwachs, M., T. Guggi, and P. J. I. Kreuz. Marrow stimulation techniques. Injury. 39(1):26–31, 2008.

    Article  Google Scholar 

  142. Stichler, S., T. Böck, N. Paxton, S. Bertlein, R. Levato, V. Schill, W. Smolan, J. Malda, J. Teßmar, and T. J. B. Blunk. Double printing of hyaluronic acid/poly (glycidol) hybrid hydrogels with poly (ε-caprolactone) for MSC chondrogenesis. Biofabrication. 9(4):044108, 2017.

    Article  PubMed  Google Scholar 

  143. Sun, Y., Y. You, W. Jiang, Z. Zhai, and K. J. T. Dai. 3D-bioprinting a genetically inspired cartilage scaffold with GDF5-conjugated BMSC-laden hydrogel and polymer for cartilage repair. Theranostics. 9(23):6949, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tavares, M. T., V. M. Gaspar, M. V. Monteiro, J. P. S. Farinha, C. Baleizão, and J. F. Mano. GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation. Biofabrication.13(3):035012, 2021.

    Article  CAS  Google Scholar 

  145. Thayer, P. S., L. S. Orrhult, and H. Martínez. Bioprinting of cartilage and skin tissue analogs utilizing a novel passive mixing unit technique for bioink precellularization. J. Visual. Exp. 131:e56372, 2018.

    Google Scholar 

  146. Tijore, A., J.-M. Behr, S. A. Irvine, V. Baisane, and S. Venkatraman. Bioprinted gelatin hydrogel platform promotes smooth muscle cell contractile phenotype maintenance. Biomed. Microdev. 20(2):1–10, 2018.

    Article  CAS  Google Scholar 

  147. Townsend, J. M., E. C. Beck, S. H. Gehrke, C. J. Berkland, and M. S. Detamore. Flow behavior prior to crosslinking: the need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Progr. Polym. 91:126–140, 2019.

    Article  CAS  Google Scholar 

  148. Wakitani, S., T. Mitsuoka, N. Nakamura, Y. Toritsuka, Y. Nakamura, and S. J. C. T. Horibe. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transpl. 13(5):595–600, 2004.

    Article  Google Scholar 

  149. Weadock, K., and R. M. Olson. Evaluation of collagen crosslinking techniques. Biomater. Med. Dev. Artif. Organs. 11(4):293–318, 1983.

    Article  Google Scholar 

  150. Westreich, R. W., H.-W. Courtland, P. Nasser, K. Jepsen, and W. J. Lawson. Defining nasal cartilage elasticity: biomechanical testing of the tripod theory based on a cantilevered model. Archiv. Fac. Plast. Surg. 9(4):264–270, 2007.

    Article  Google Scholar 

  151. Wu, J.-J., M. A. Weis, L. S. Kim, and D. R. Eyre. Type III collagen, a fibril network modifier in articular cartilage. J. Biol. Chem. 285(24):18537–18544, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xu, C., W. Chai, Y. Huang, and R. R. Markwald. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol. Bioeng. 109(12):3152–3160, 2012.

    Article  CAS  PubMed  Google Scholar 

  153. Xu, T., K. W. Binder, M. Z. Albanna, D. Dice, W. Zhao, J. J. Yoo, and A. J. B. Atala. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication.5(1):015001, 2012.

    Article  PubMed  Google Scholar 

  154. Xu, Y., H.-J. Sun, Y. Lv, J.-C. Zou, B.-L. Liu, and T.-C.J.C. Hua. Effects of freezing rates and cryoprotectant on thermal expansion of articular cartilage during freezing process. Cryoletters. 34(4):313–323, 2013.

    CAS  PubMed  Google Scholar 

  155. Yang, X., Z. Lu, H. Wu, W. Li, L. Zheng, and J. Zhao. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater. Sci. Eng. C. 83:195–201, 2018.

    Article  CAS  Google Scholar 

  156. Yu, J., S. Lee, S. Choi, K. K. Kim, B. Ryu, C.-Y. Kim, C.-R. Jung, B.-H. Min, Y.-Z. Xin, and S. A. J. P. Park. Fabrication of a polycaprolactone/alginate bipartite hybrid scaffold for osteochondral tissue using a three-dimensional bioprinting system. Polymers. 12(10):2203, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yuan, T.-Y., J. Zhang, T. Yu, J.-P. Wu, and Q.-Y. Liu, 3D bioprinting for spinal cord injury repair. Biotechnology 10 (2022).

  158. Zhang, A. P., X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. J. A. M. He. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater. 24(31):4266–4270, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang, J., Q. Hu, S. Wang, J. Tao, and M.J. Gou, Digital light processing based three-dimensional printing for medical applications. Int. J. Bioprint. 6(1) (2020).

  160. Zhang, L., J. Hu, and K. A. Athanasiou. The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 37(1–2):100, 2009.

    CAS  Google Scholar 

  161. Zhou, M., B. H. Lee, Y. J. Tan, and L. P. J. B. Tan. Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing. Biofabrication. 11(2):025011, 2019.

    Article  CAS  PubMed  Google Scholar 

  162. Zhu, W., X. Ma, M. Gou, D. Mei, K. Zhang, and S. J. Chen. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 40:103–112, 2016.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Natural Sciences and Engineering Research Council of Canada (NSERC RGPIN 06431), Canadian Institutes of Health Research (CIHR PS 159661), and Alberta Cancer Foundation (ACF-MIBRP 27128).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaman Boluk or Adetola B. Adesida.

Additional information

Associate Editor Emmanuel Opara oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, X., Boluk, Y. & Adesida, A.B. 3D Bioprinting of Hyaline Cartilage Using Nasal Chondrocytes. Ann Biomed Eng (2023). https://doi.org/10.1007/s10439-023-03176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-023-03176-3

Keywords

Navigation