Skip to main content
Log in

Abnormal Wall Shear Stress Area is Correlated to Coronary Artery Bypass Graft Remodeling 1 Year After Surgery

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Coronary artery bypass graft surgery is a common intervention for coronary artery disease; however, it suffers from graft failure, and the underlying mechanisms are not fully understood. To better understand the relation between graft hemodynamics and surgical outcomes, we performed computational fluid dynamics simulations with deformable vessel walls in 10 study participants (24 bypass grafts) based on CT and 4D flow MRI one month after surgery to quantify lumen diameter, wall shear stress (WSS), and related hemodynamic measures. A second CT acquisition was performed one year after surgery to quantify lumen remodeling. Compared to venous grafts, left internal mammary artery grafts experienced lower abnormal WSS (< 1 Pa) area one month after surgery (13.8 vs. 70.1%, p = 0.001) and less inward lumen remodeling one year after surgery (− 2.4% vs. − 16.1%, p = 0.027). Abnormal WSS area one month post surgery correlated with percent change in graft lumen diameter one year post surgery (p = 0.030). This study shows for the first time prospectively a correlation between abnormal WSS area one month post surgery and graft lumen remodeling 1 year post surgery, suggesting that shear-related mechanisms may play a role in post-operative graft remodeling and might help explain differences in failure rates between arterial and venous grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CABG:

Coronary artery bypass graft

CFD:

Computational fluid dynamics

CT:

Computed tomography

LIMA:

Left internal mammary artery

MRI:

Magnetic resonance imaging

RA:

Radial artery

SVG:

Saphenous vein graft

WSS:

Wall shear stress

References

  1. Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46:1097, 2008.

    Article  PubMed  Google Scholar 

  2. Davies, P. F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6:16–26, 2009.

    Article  CAS  PubMed  Google Scholar 

  3. de Graaf, F. R., J. E. van Velzen, A. J. Witkowska, J. D. Schuijf, N. van der Bijl, L. J. Kroft, A. de Roos, J. H. C. Reiber, J. J. Bax, G. J. de Grooth, J. W. Jukema, and E. E. van der Wall. Diagnostic performance of 320-slice multidetector computed tomography coronary angiography in patients after coronary artery bypass grafting. Eur. Radiol. 21:2285–2296, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eslami, P., J. Tran, Z. Jin, J. Karady, R. Sotoodeh, M. T. Lu, U. Hoffmann, and A. Marsden. Effect of wall elasticity on hemodynamics and wall shear stress in patient-specific simulations in the coronary arteries. J. Biomech. Eng. 2019. https://doi.org/10.1115/1.4043722.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Figard, S. Introduction to Biostatistics with JMP. SAS Institute, 2019, 288 pp.at <https://books.google.com/books/about/Introduction_to_Biostatistics_with_JMP.html?id=0ZRMygEACAAJ>

  6. Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195:5685–5706, 2006.

    Article  Google Scholar 

  7. Gallo, D., G. De Santis, F. Negri, D. Tresoldi, R. Ponzini, D. Massai, M. A. Deriu, P. Segers, B. Verhegghe, G. Rizzo, and U. Morbiducci. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow. Ann. Biomed. Eng. 40:729–741, 2012.

    Article  CAS  PubMed  Google Scholar 

  8. Gaudino, M., A. Di Franco, D. L. Bhatt, J. H. Alexander, A. Abbate, L. Azzalini, S. Sandner, G. Sharma, S. V. Rao, F. Crea, S. E. Fremes, and S. Bangalore. The association between coronary graft patency and clinical status in patients with coronary artery disease. Eur. Heart J. 42:1433–1441, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gijsen, F., Y. Katagiri, P. Barlis, C. Bourantas, C. Collet, U. Coskun, J. Daemen, J. Dijkstra, E. Edelman, P. Evans, K. van der Heiden, R. Hose, B.-K. Koo, R. Krams, A. Marsden, F. Migliavacca, Y. Onuma, A. Ooi, E. Poon, H. Samady, P. Stone, K. Takahashi, D. Tang, V. Thondapu, E. Tenekecioglu, L. Timmins, R. Torii, J. Wentzel, and P. Serruys. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur. Heart J. 40:3421–3433, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gimbrone, M. A., and G. García-Cardeña. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118:620–636, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goldman, S., K. Zadina, T. Moritz, T. Ovitt, G. Sethi, J. G. Copeland, L. Thottapurathu, B. Krasnicka, N. Ellis, R. J. Anderson, and W. Henderson. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: Results from a Department of Veterans Affairs Cooperative Study. J. Am. Coll. Cardiol. 44:2149–2156, 2004.

    Article  PubMed  Google Scholar 

  12. Heiberg, E., C. Green, J. Toger, A. M. Andersson, M. Carlsson, and H. Arheden. FourFlow-open source code software for quantification and visualization of time-resolved three-directional phase contrast magnetic resonance velocity mapping. J. Cardiovasc. Magn. Reson. 14:W14, 2012.

    Article  PubMed Central  Google Scholar 

  13. Heiberg, E., J. Sjögren, M. Ugander, M. Carlsson, H. Engblom, and H. Arheden. Design and validation of segment-freely available software for cardiovascular image analysis. BMC Med. Imaging. 10:1, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hwang, H. Y., B.-K. Koo, S. Y. Yeom, T. K. Kim, and K.-B. Kim. Endothelial shear stress of the saphenous vein composite graft based on the internal thoracic artery. Ann. Thorac. Surg. 105:564–571, 2018.

    Article  PubMed  Google Scholar 

  15. Jiménez-Juan, L., E. T. Nguyen, B. J. Wintersperger, H. Moshonov, A. M. Crean, D. P. Deva, N. S. Paul, and F. S. Torres. Failed heart rate control with oral metoprolol prior to coronary CT angiography: effect of additional intravenous metoprolol on heart rate, image quality and radiation dose. Int. J. Cardiovasc. Imaging. 29:199–206, 2013.

    Article  PubMed  Google Scholar 

  16. Khan, M. O., J. S. Tran, H. Zhu, J. Boyd, R. R. S. Packard, R. P. Karlsberg, A. M. Kahn, and A. L. Marsden. Low wall shear stress is associated with saphenous vein graft stenosis in patients with coronary artery bypass grafting. J. Cardiovasc. Trans. Res. 2020. https://doi.org/10.1007/s12265-020-09982-7.

    Article  Google Scholar 

  17. Kim, H. J., I. E. Vignon-Clementel, J. S. Coogan, C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38:3195–3209, 2010.

    Article  CAS  PubMed  Google Scholar 

  18. Lopes, R. D., R. H. Mehta, G. E. Hafley, J. B. Williams, M. J. Mack, E. D. Peterson, K. B. Allen, R. A. Harrington, C. M. Gibson, R. M. Califf, N. T. Kouchoukos, T. B. Ferguson, J. H. Alexander, Project of Ex Vivo Vein Graft Engineering via Transfection IV (PREVENT IV) Investigators. Relationship between vein graft failure and subsequent clinical outcomes after coronary artery bypass surgery. Circulation. 125:749–756, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Markl, M., G. J. Wagner, and A. J. Barker. Re: Blood flow analysis of the aortic arch using computational fluid dynamics. Eur. J. Cardiothorac. Surg. 49:1586–1587, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Petrie, M. C., P. S. Jhund, L. She, C. Adlbrecht, T. Doenst, J. A. Panza, J. A. Hill, K. L. Lee, J. L. Rouleau, D. L. Prior, I. S. Ali, J. Maddury, K. S. Golba, H. D. White, P. Carson, L. Chrzanowski, A. Romanov, A. B. Miller, and E. J. Velazquez. Ten year outcomes after coronary artery bypass grafting according to age in patients with heart failure and left ventricular systolic dysfunction: an analysis of the extended follow up of the STICH trial. Circulation. 134:1314–1324, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pinho-Gomes, A.-C., L. Azevedo, C. Antoniades, and D. P. Taggart. Comparison of graft patency following coronary artery bypass grafting in the left versus the right coronary artery systems: a systematic review and meta-analysis. Eur. J. Cardiothorac. Surg. 54:221–228, 2018.

    Article  PubMed  Google Scholar 

  22. Pirola, S., Z. Cheng, O. A. Jarral, D. P. O’Regan, J. R. Pepper, T. Athanasiou, and X. Y. Xu. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics. J. Biomech. 60:15–21, 2017.

    Article  CAS  PubMed  Google Scholar 

  23. Ramachandra, A. B., A. M. Kahn, and A. L. Marsden. Patient-specific simulations reveal significant differences in mechanical stimuli in venous and arterial coronary grafts. J. Cardiovasc. Transl. Res. 9:279–290, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sankaran, S., M. Esmaily Moghadam, A. M. Kahn, E. E. Tseng, J. M. Guccione, and A. L. Marsden. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann. Biomed. Eng. 40:2228–2242, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Seo, J., A. B. Ramachandra, J. Boyd, A. L. Marsden, and A. M. Kahn. Computational evaluation of venous graft geometries in coronary artery bypass surgery. Semin. Thorac. Cardiovasc. Surg. 2021. https://doi.org/10.1053/j.semtcvs.2021.03.007.

    Article  PubMed  Google Scholar 

  26. Stone, P. H., S. Saito, S. Takahashi, Y. Makita, S. Nakamura, T. Kawasaki, A. Takahashi, T. Katsuki, S. Nakamura, A. Namiki, and A. Hirohata. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics. Circulation. 126:172–181, 2012.

    Article  PubMed  Google Scholar 

  27. Taylor, A. J., et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. J. Cardiovasc. Comput. Tomogr. 4:407.e1-407.e33, 2010.

    Article  PubMed  Google Scholar 

  28. Taylor, C. A., T. A. Fonte, and J. K. Min. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J. Am. Coll. Cardiol. 61:2233–2241, 2013.

    Article  PubMed  Google Scholar 

  29. Tran-Nguyen, N., F. Condemi, A. Yan, S. Fremes, P. Triverio, and L. Jimenez-Juan. Wall shear stress differences between arterial and venous coronary artery bypass grafts one month after surgery. Ann. Biomed. Eng. 2022. https://doi.org/10.1007/s10439-022-03007-x.

    Article  PubMed  Google Scholar 

  30. Updegrove, A., N. M. Wilson, J. Merkow, H. Lan, A. L. Marsden, and S. C. Shadden. SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng. 45:525–541, 2017.

    Article  PubMed  Google Scholar 

  31. Zhou, Y., G. S. Kassab, and S. Molloi. On the design of the coronary arterial tree: a generalization of Murray’s law. Phys. Med. Biol. 44:2929–2945, 1999.

    Article  CAS  PubMed  Google Scholar 

  32. Zientara, A., L. Rings, H. Bruijnen, O. Dzemali, D. Odavic, A. Häussler, M. Gruszczynski, and M. Genoni. Early silent graft failure in off-pump coronary artery bypass grafting: a computed tomography analysis†. Eur. J. Cardiothorac. Surg. 56:919–925, 2019.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the RSNA Scholar Grant #RSCH1716, by the Department of Medical Imaging of the University of Toronto, by the Jean & Lauri Hiivala Research Fund for Heart Health, by the Institute of Biomedical Engineering of the University of Toronto, by the Canada Research Chairs program, and by Compute Canada.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhien Tran-Nguyen.

Additional information

Associate Editor Arash Kheradvar oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 665 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran-Nguyen, N., Yan, A.T., Fremes, S. et al. Abnormal Wall Shear Stress Area is Correlated to Coronary Artery Bypass Graft Remodeling 1 Year After Surgery. Ann Biomed Eng 51, 1588–1601 (2023). https://doi.org/10.1007/s10439-023-03167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03167-4

Keywords

Navigation