Skip to main content
Log in

Flexible Needle Steering with Tethered and Untethered Actuation: Current States, Targeting Errors, Challenges and Opportunities

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Accurate needle targeting is critical for many clinical procedures, such as transcutaneous biopsy or radiofrequency ablation of tumors. However, targeting errors may arise, limiting the widespread adoption of these procedures. Advances in flexible needle (FN) steering are emerging to mitigate these errors. This review summarizes the state-of-the-art developments of FNs and addresses possible targeting errors that can be overcome with steering actuation techniques. FN steering techniques can be classified as passive and active. Passive steering directly results from the needle-tissue interaction forces, whereas active steering requires additional forces to be applied at the needle tip, which enhances needle steerability. Therefore, the corresponding targeting errors of most passive FNs and active FNs are between 1 and 2 mm, and less than 1 mm, respectively. However, the diameters of active FNs range from 1.42 to 12 mm, which is larger than the passive steering needle varying from 0.5 to 1.4 mm. Therefore, the development of active FNs is an area of active research. These active FNs can be steered using tethered internal direct actuation or untethered external actuation. Examples of tethered internal direct actuation include tendon-driven, longitudinal segment transmission and concentric tube transmission. Tendon-driven FNs have various structures, and longitudinal segment transmission needles could be adapted to reduce tissue damage. Additionally, concentric tube needles have immediate advantages and clinical applications in natural orifice surgery. Magnetic actuation enables active FN steering with untethered external actuation and facilitates miniaturization. The challenges faced in the fabrication, sensing, and actuation methods of FN are analyzed. Finally, bio-inspired FNs may offer solutions to address the challenges faced in FN active steering mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abayazid, M., M. Kemp, and S. Misra. 3D flexible needle steering in soft-tissue phantoms using fiber bragg grating sensors. in Proc. IEEE Int. Conf. Robot. Autom., Karlsruhe, Germany, 2013, pp. 5843–5849.

  2. Abayazid, M., P. Moreira, N. Shahriari, S. Patil, R. Alterovitz, and S. Misra. Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces. Med. Eng. Phys. 37:145–150, 2015

    Article  PubMed  Google Scholar 

  3. Abayazid, M., R. J. Roesthuis, R. Reilink, and S. Misra. Integrating deflection models and image feedback for real-time flexible needle steering. IEEE Trans. Robot. 29:542–553, 2012

    Article  Google Scholar 

  4. Adagolodjo, Y., L. Goffin, M. De Mathelin, and H. Courtecuisse. Robotic insertion of flexible needle in deformable structures using inverse finite-element simulation. IEEE Trans. Robot. 35:697–708, 2019

    Article  Google Scholar 

  5. Adebar, T., A. Fletcher, and A. Okamura. 3D ultrasound-guided robotic needle steering in biological tissue. IEEE Trans. Biomed. Eng. 61:2899–2910, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  6. Adebar, T. K., J. D. Greer, P. F. Laeseke, G. L. Hwang, and A. M. Okamura. Methods for improving the curvature of steerable needles in biological tissue. IEEE Trans. Biomed. Eng. 63:1167–1177, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aggravi, M., D. A. Estima, A. Krupa, S. Misra, and C. Pacchierotti. Haptic teleoperation of flexible needles combining 3d ultrasound guidance and needle tip force feedback. IEEE Robot. Autom. Lett. 6:4859–4866, 2021

    Article  Google Scholar 

  8. Amanov, E., T.-D. Nguyen, and J. Burgner-Kahrs. Tendon-driven continuum robots with extensible sections - A model-based evaluation of path following motions. Int. J. Robot. Res. 40:7–23, 2021

    Article  Google Scholar 

  9. Beirne, P. V., S. Hennessy, S. L. Cadogan, F. Shiely, T. Fitzgerald, and F. MacLeod. Needle size for vaccination procedures in children and adolescents. Cochrane Database Syst. Rev. 2018. https://doi.org/10.1002/14651858.CD010720.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  10. van de Berg, N. J., J. Dankelman, and J. J. van den Dobbelsteen. Design of an actively controlled steerable needle with tendon actuation and fbg-based shape sensing. Med. Eng. Phys. 37:617–622, 2015

    Article  PubMed  Google Scholar 

  11. Bernardes, M. C., B. V. Adorno, P. Poignet, and G. A. Borges. Robotassisted automatic insertion of steerable needles with closed-loop imaging feedback and intraoperative trajectory replanning. Mechatronics. 23:630–645, 2013

    Article  Google Scholar 

  12. Burgner, J., D. C. Rucker, H. B. Gilbert, P. J. Swaney, P. T. Russell, K. D. Weaver, and R. J. Webster III. A telerobotic system for transnasal surgery. IEEE Trans. Mechatron. 19:996–1006, 2014

    Article  Google Scholar 

  13. Cai, C., C. Sun, Y. Han, and Q. Zhang. Clinical flexible needle puncture path planning based on particle swarm optimization. Comput. Meth. Prog. Biol.193:105511, 2020

    Article  Google Scholar 

  14. Carpi, F., and C. Pappone. Stereotaxis niobe® magnetic navigation system for endocardial catheter ablation and gastrointestinal capsule endoscopy. Expert. Rev. Med. Devic. 6:487–498, 2014

    Article  Google Scholar 

  15. Cerkvenik, U., B. Van de Straat, S. W. Gussekloo, and J. L. Van Leeuwen. Mechanisms of ovipositor insertion and steering of a parasitic wasp. Proc. Natl. Acad. Sci. U.S.A. 114:E7822–E7831, 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chautems, C., A. Tonazzini, Q. Boehler, S. H. Jeong, D. Floreano, and B. J. Nelson. Magnetic continuum device with variable stiffness for minimally invasive surgery. Adv. Intell. Syst. 2:1–9, 2020

    Article  Google Scholar 

  17. Chautems, C., A. Tonazzini, D. Floreano, and B. J. Nelson. A variable stiffness catheter controlled with an external magnetic field. in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Vancouver, BC, Canada, 2017, pp. 181–186.

  18. Chevrie, J., N. Shahriari, M. Babel, A. Krupa, and S. Misra. Flexible needle steering in moving biological tissue with motion compensation using ultrasound and force feedback. IEEE Robot. Autom. Lett. 3:2338–2345, 2018

    Article  Google Scholar 

  19. Chiroiu, V., N. Nedelcu, D. Pisla, L. Munteanu, and C. Rugina. On the flexible needle insertion into the human liver. Sci. Rep. 11:1–14, 2021

    Article  Google Scholar 

  20. Conci, A., Brazil, A. L., Popovici, D., Jiga, G., and Lebon, F. Modeling the behavior of human body tissues on penetration. AIP Conf. Proc. 1932: 020006-1–020006-6, 2018.

  21. da Veiga, T., J. H. Chandler, P. Lloyd, G. Pittiglio, N. J. Wilkinson, A. K. Hoshiar, R. A. Harris, and P. Valdastri. Challenges of continuum robots in clinical context: a review. P Biomed. Eng. 2:032003, 2020

    Article  Google Scholar 

  22. De Falco, I., C. Culmone, A. Menciassi, J. Dankelman, and J. J. van Den Dobbelsteen. A variable stiffness mechanism for steerable percutaneous instruments: integration in a needle. Med. Biol. Eng. Comput. 56:2185–2199, 2018

    Article  PubMed  Google Scholar 

  23. de Kater, E. P., A. Sakes, J. Bloemberg, D. J. Jager, and P. Breedveld. Design of a flexible wasp-inspired tissue transport mechanism. Front. Bioeng. Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.782037

    Article  PubMed  PubMed Central  Google Scholar 

  24. de Ruiter, Q. M., J. R. Fontana, W. F. Pritchard, M. Mauda-Havakuk, I. Bakhutashvili, J. A. Esparza-Trujillo, N. A. Varble, M. Verstege, S. Xu, R. Seifabadi, et al. Endovascular steerable and endobronchial precurved guiding sheaths for transbronchial needle delivery under augmented fluoroscopy and cone beam CT image guidance. Transl. Lung Cancer Res. 10:3627–3644, 2021

    Article  PubMed  PubMed Central  Google Scholar 

  25. De Vries, M., J. Sikorski, S. Misra, and J. van den Dobbelsteen. Axially rigid steerable needle with compliant active tip control. PLoS ONE. 16:1–18, 2021

    Article  Google Scholar 

  26. DiMaio, S. P., and S. E. Salcudean. Needle insertion modeling and simulation. IEEE Trans. Robot. Autom. 19:864–875, 2003

    Article  Google Scholar 

  27. Dupont, P. E., J. Lock, B. Itkowitz, and E. Butler. Design and control of concentric-tube robots. IEEE Trans. Robot. 26:209–225, 2010

    Article  PubMed  PubMed Central  Google Scholar 

  28. Edelmann, J., A. J. Petruska, and B. J. Nelson. Magnetic control of continuum devices. Int. J. Robot. Res. 36:68–85, 2017

    Article  Google Scholar 

  29. Limpabandhu, C., Y. Hu, H. Ren, W. Song, and Z. Tse. Towards catheter steering using magnetic tractor beam coupling. Proc. IMechE Part H: J Eng. Med. 236:583–591, 2022.

  30. Farooq, M. U., B. Xu, and S. Y. Ko. A concentric tube-based 4-DOF puncturing needle with a novel miniaturized actuation system for vitrectomy. Biomed. Eng. Online. 18:1–16, 2019

    Article  Google Scholar 

  31. Gafford, J. B., S. Webster, N. Dillon, E. Blum, R. Hendrick, F. Maldon-ado, E. A. Gillaspie, O. B. Rickman, S. D. Herrell, and R. J. Webster. A concentric tube robot system for rigid bronchoscopy: a feasibility study on central airway obstruction removal. Ann. Biomed. Eng. 48:181–189, 2020

    Article  PubMed  Google Scholar 

  32. Gang, E. S., B. L. Nguyen, Y. Shachar, L. Farkas, L. Farkas, B. Marx, D. Johnson, M. C. Fishbein, C. Gaudio, and S. J. Kim. Dynamically shaped magnetic fields: initial animal validation of a new remote electrophysiology catheter guidance and control system. Circ- Arrhythmia Electr. 4:770–777, 2011

    Article  Google Scholar 

  33. Gilbert, H. B., J. Neimat, and R. J. Webster. Concentric tube robots as steerable needles: achieving follow-the-leader deployment. IEEE Trans. Robot. 31:246–258, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  34. Han, D., R. S. Morde, S. Mariani, A. L. Mattina, E. Vignali, C. Yang, G. Barillaro, and H. Lee. 4D Printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv. Funct. Mater. 30:1–12, 2020

    Article  Google Scholar 

  35. Hendrick, R. J., S. D. Herrell and R. J. Webster III. A multi-arm hand-held robotic system for transurethral laser prostate surgery. in Proc. IEEE Int. Conf. Robot. Autom., Hong Kong, China, 2014, pp. 2850–2855.

  36. Henken, K., D. Van Gerwen, J. Dankelman, and J. Van Den Dobbelsteen. Accuracy of needle position measurements using fiber bragg gratings. Minim. Invasiv. Ther. 21:408–414, 2012

    Article  Google Scholar 

  37. Heunis, C., J. Sikorski, and S. Misra. Flexible instruments for endovascular interventions: Improved magnetic steering, actuation, and image-guided surgical instruments. IEEE Robot. Autom. Mag. 25:71–82, 2018

    Article  Google Scholar 

  38. Hong, A., A. J. Petruska, A. Zemmar, and B. J. Nelson. Magnetic control of a flexible needle in neurosurgery. IEEE Trans. Biomed. Eng. 68:616–627, 2020

    Article  Google Scholar 

  39. Hu, X., A. Chen, Y. Luo, C. Zhang, and E. Zhang. Steerable catheters for minimally invasive surgery: a review and future directions. Comput. Assist. Surg. 23:21–41, 2018

    Article  Google Scholar 

  40. Ilami, M., R. J. Ahmed, A. Petras, B. Beigzadeh, and H. Marvi. Magnetic needle steering in soft phantom tissue. Sci. Rep. 10:1–11, 2020

    Article  Google Scholar 

  41. Issatayeva, A., A. Amantayeva, W. Blanc, D. Tosi, and C. Molardi. Design and analysis of a fiber-optic sensing system for shape reconstruction of a minimally invasive surgical needle. Sci. Rep. 11:1–12, 2021

    Article  Google Scholar 

  42. Jiang, S., B. Jiang, P. Fang, and Z. Yang. Pre-operative motion planner for steerable needles using cost map based on repulsive field and empirical model of needle deflection. J. Med. Devices. 16:021004, 2022

    Article  Google Scholar 

  43. Karimi, S., and B. Konh. Self-sensing feedback control of multiple interacting shape memory alloy actuators in a 3d steerable active needle. J. Intel. Mat. Syst. Str. 31:1524–1540, 2020

    Article  CAS  Google Scholar 

  44. Khadem, M., C. Rossa, N. Usmani, R. S. Sloboda, and M. Tavakoli. A two-body rigid/flexible model of needle steering dynamics in soft tissue. IEEE/ASME Trans. Mech. 21:2352–2364, 2016

    Article  Google Scholar 

  45. Khashei Varnamkhasti, Z., and B. Konh. Cable-driven 3d steerable surgical needle for needle-based procedures. in Proc. Conf Des Med Dev., Minneapolis, MN, USA, 2020, pp. V001T06A008-1-5.

  46. Kimura, T., S. Takatsuki, A. Oishi, M. Negishi, S. Kashimura, Y. Katsumata, T. Nishiyama, N. Nishiyama, Y. Tanimoto, Y. Aizawa, et al. Operator-blinded contact force monitoring during pulmonary vein isolation using conventional and steerable sheaths. Int. J. Cardiol. 177:970–976, 2014

    Article  PubMed  Google Scholar 

  47. Ko, S. Y., L. Frasson, and F. R. y Baena. Closed-loop planar motion control of a steerable probe with a “programmable bevel” inspired by nature. IEEE Trans. Robot. 27:970–983, 2011

    Article  Google Scholar 

  48. Ko, S., and Y. B. F. Rodriguez. Toward a miniaturized needle steering system with path planning for obstacle avoidance. IEEE Trans. Biomed. Eng. 60:910–917, 2013

    Article  PubMed  Google Scholar 

  49. Kratchman, L. B., M. M. Rahman, J. R. Saunders, P. J. Swaney, and R. J. Webster III. Toward robotic needle steering in lung biopsy: a tendon-actuated approach. Proc. SPIE, Med. Imag. Vis., Image-Guided Procedures, Model. 7964:79641I-1–79641I-8, 2011.

  50. Lee, H., and J. Kim. Estimation of flexible needle deflection in layered soft tissues with different elastic moduli. Med. Biol. Eng. Comput. 52:729–740, 2014

    Article  PubMed  Google Scholar 

  51. Lee, W., J. Nam, J. Kim, E. Jung, N. Kim, and G. Jang. Steering, tunneling, and stent delivery of a multifunctional magnetic catheter robot to treat occlusive vascular disease. IEEE Trans. Ind. Electron. 68:391–400, 2020

    Article  Google Scholar 

  52. Lee, J., J. Wang, and W. Park. Efficient mechanism design and systematic operation planning for tube-wire flexible needles. J. Mech. Robot. 10:1–9, 2018

    Article  CAS  Google Scholar 

  53. Li, M., D. Gao, Y. Lei, and T. Xu. Dynamic path planning for beveltip flexible needle insertion into soft tissue based on a real-time finite element model. Math. Probl. Eng. 1–13:2020, 2020

    Google Scholar 

  54. Li, A. D., K. B. Putra, L. Chen, J. S. Montgomery, and A. Shih. Mosquito proboscis-inspired needle insertion to reduce tissue deformation and organ displacement. Sci Rep. 10:1–14, 2020

    Google Scholar 

  55. Lu, M., Y. Zhang, and H. Du. Design and control of a novel magnetic resonance imaging-compatible breast intervention robot. Int. J. Adv. Robot. Sysm. 17:1–14, 2020

    Google Scholar 

  56. Mahoney, A. W., and J. J. Abbott. 5-DOF manipulation of an untethered magnetic device in fluid using a single permanent magnet. in Proc. Conf. Robotics: Sci. Syst. 2014.

  57. Majewicz, A., T. R. Wedlick, K. B. Reed, and A. M. Okamura. Evaluation of robotic needle steering in ex vivo tissue. in Proc. IEEE Int. Conf. Robot. Autom., Anchorage, Alaska, USA. 2010, pp. 2068–2073.

  58. Matheson, E., and F. Rodriguez y Baena. Biologically inspired surgical needle steering: technology and application of the programmable beveltip needle. Biomimetics. 5:1–23, 2020

    Article  Google Scholar 

  59. Moreira, P., K. J. Boskma, and S. Misra. Towards MRI-guided flexible needle steering using fiber bragg grating-based tip tracking. in Proc. IEEE Int. Conf. Robot. Autom., Singapore, 2017, pp. 4849–4854.

  60. Moreira, P., and S. Misra. Biomechanics-based curvature estimation for ultrasound-guided flexible needle steering in biological tissues. Ann. Biomed. Eng. 43:1716–1726, 2015

    Article  PubMed  Google Scholar 

  61. Neubach, Z., and M. Shoham. Ultrasound-guided robot for flexible needle steering. IEEE Trans. Biomed. Eng. 57:799–805, 2010

    Article  PubMed  Google Scholar 

  62. Neumann, M., and J. Burgner-Kahrs. Considerations for follow-the -leader motion of extensible tendon-driven continuum robots. in Proc. IEEE Int. Conf. Robot. Autom., 2016, pp. 917–923.

  63. Norton, J. C., P. R. Slawinski, H. S. Lay, J. W. Martin, B. F. Cox, G. Cummins, M. P. Desmulliez, R. E. Clutton, K. L. Obstein, S. Cochran, et al. Intelligent magnetic manipulation for gastrointestinal ultrasound. Sci. Robot. 4:eaav7725, 2019

    Article  PubMed  PubMed Central  Google Scholar 

  64. Padasdao, B., and B. Konh. Shape memory alloy actuators in an active needle—modeling, precise assembly, and performance evaluation. J. Manuf. Sci. Eng. 143:1–10, 2021

    Article  Google Scholar 

  65. Park, Y. L., S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky. Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions. IEEE/ASME Trans. Mech. 15:906–915, 2010

    Google Scholar 

  66. Patil, J., S. Ford, C. Egeler, and D. Williams. The effect of needle dimensions and infusion rates on injection pressures in regional anaesthesia needles: a bench-top study. Anaesthesia. 70:183–189, 2015

    Article  CAS  PubMed  Google Scholar 

  67. Pattanshetti, S., and S. C. Ryu. Design and fabrication of lasermachined hinge joints on miniature tubes for steerable medical devices. J. Mech. Robot. 10:011002, 2018

    Article  Google Scholar 

  68. Pattanshetti, S., R. Sandström, A. Kottala, N. M. Amato, and S. C. Ryu. Feasibility Study of Robotic Needles with a Rotational Tip-Joint and Notch Patterns. in Proc. IEEE Int. Conf. Robot. Autom., 2019, pp. 1534–1540.

  69. Petruska, A. J., F. Ruetz, A. Hong, L. Regli, O. Surucu, A. Zemmar, and B. J. Nelson. Magnetic needle guidance for neurosurgery: Initial design and proof of concept. in Proc. IEEE Int. Conf. Robot. Autom., Stockholm, Sweden, 2016, pp. 4392–4397.

  70. Piskarev, Y., J. Shintake, C. Chautems, J. Lussi, Q. Boehler, B. J. Nelson, and D. Floreano. A variable stiffness magnetic catheter made of a conductive phase-change polymer for minimally invasive surgery. Adv. Funct. Mater. 32:2107662, 2022

    Article  CAS  Google Scholar 

  71. Ponten, R., C. B. Black, A. J. Russ, and D. C. Rucker. Analysis of a concentric-tube robot design and feasibility for endoscopic deployment. in Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling.10135. SPIE, pp. 290–300, 2017.

  72. Pratt, R. L., and A. J. Petruska. Empirically comparing magnetic needle steering models using expectation-maximization. Robotics. 11:1–18, 2022

    Article  Google Scholar 

  73. Qi, B., Z. Yu, Z. K. Varnamkhasti, Y. Zhou, and J. Sheng. Toward a telescopic steerable robotic needle for minimally invasive tissue biopsy. IEEE Robot. Autom. Let. 6:1989–1996, 2021

    Article  Google Scholar 

  74. Roesthuis, R. J., N. J. van de Berg, J. J. van den Dobbelsteen, and S. Misra. Modeling and steering of a novel actuated-tip needle through a soft-tissue simulant using fiber bragg grating sensors. in Proc. IEEE Int. Conf. Robot. Autom., Washington, USA, 2015, pp. 2283–2289.

  75. Roesthuis, R. J., M. Kemp, J. J. van den Dobbelsteen, and S. Misra. Three-dimensional needle shape reconstruction using an array of fiber bragg grating sensors. IEEE/ASME Trans. Mechatron. 19:1115–1126, 2014

    Article  Google Scholar 

  76. Ryan, P., and E. Diller. Magnetic actuation for full dexterity microrobotic control using rotating permanent magnets. IEEE Trans. Robot. 33:1398–1409, 2017

    Article  Google Scholar 

  77. Ryu, S. C., Z. F. Quek, J.-S. Koh, P. Renaud, R. J. Black, B. Moslehi, B. L. Daniel, K.-J. Cho, and M. R. Cutkosky. Design of an optically controlled MR-compatible active needle. IEEE Trans. Robot. 31:1–11, 2014

    Article  Google Scholar 

  78. Ryu, S. C., Z. F. Quek, P. Renaud, R. J. Black, B. L. Daniel, and M. R. Cutkosky. An optical actuation system and curvature sensor for a MRcompatible active needle. in Proc. IEEE Int. Conf. Robot. Autom., Saint Paul, MN, USA, 2012, pp. 1589–1594.

  79. Scali, M., D. Kreeft, P. Breedveld, and D. Dodou. Design and evaluation of a wasp-inspired steerable needle. Proc. SPIE 10162, Bioinspiration, Biomimetics, and Bioreplication 2017, 10162:34–46, 2017.

  80. Scali, M., T. Pusch, P. Breedveld, and D. Dodou. Ovipositor-inspired steerable needle: design and preliminary experimental evaluation. Bioinspir Biomim. 13:016006, 2017

    Article  CAS  PubMed  Google Scholar 

  81. Scali, M., P. A. Veldhoven, P. W. Henselmans, D. Dodou, and P. Breedveld. Design of an ultra-thin steerable probe for percutaneous interventions and preliminary evaluation in a gelatine phantom. PLoS ONE. 14:e0221165, 2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Secoli, R., E. Matheson, M. Pinzi, S. Galvan, A. Donder, T. Watts, M. Riva, D. D. Zani, L. Bello, and F. R. Baena. Modular robotic platform for precision neurosurgery with a bio-inspired needle: system overview and first in-vivo deployment. PloS one. 17:e0275686, 2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Seifabadi, R., E. E. Gomez, F. Aalamifar, G. Fichtinger, and I. Iordachita. Real-time tracking of a bevel-tip needle with varying insertion depth: Toward teleoperated MRI-guided needle steering. in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Tokyo, Japan. 2013, pp 469–476.

  84. Shahriari, N., J. R. Georgiadis, M. Oudkerk, and S. Misra. Hybrid control algorithm for flexible needle steering: demonstration in phantom and human cadaver. PLoS ONE. 13:e0210052, 2018

    Article  PubMed  PubMed Central  Google Scholar 

  85. Shi, C., X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren. Shape sensing techniques for continuum robots in minimally invasive surgery: a survey. IEEE Trans. Biomed. Eng. 64:1665–1678, 2017

    Article  PubMed  Google Scholar 

  86. Sikorski, J., I. Dawson, A. Denasi, E. E. Hekman, and S. Misra. Introducing BigMag—a novel system for 3d magnetic actuation of flexible surgical manipulators. in Proc. IEEE Int. Conf. Robot. Autom., Singapore, 2017, pp. 3594–3599.

  87. Sikorski, J., A. Denasi, G. Bucchi, S. Scheggi, and S. Misra. Visionbased 3-D control of magnetically actuated catheter using BigMag—An array of mobile electromagnetic coils. IEEE/ASME Trans. Mech. 24:505–516, 2019

    Article  Google Scholar 

  88. Song, S., Z. Li, H. Yu, and H. Ren. Electromagnetic positioning for tip tracking and shape sensing of flexible robots. IEEE Sens J. 15:4565–4575, 2015

    Article  Google Scholar 

  89. Su, H., K.-W. Kwok, K. Cleary, I. Iordachita, M. C. Cavusoglu, J. P. Desai, and G. S. Fischer. State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions. Proc. IEEE. 110:968–992, 2022

    Article  Google Scholar 

  90. Swaney, P. J., J. Burgner, H. B. Gilbert, and R. J. Webster. A flexurebased steerable needle: high curvature with reduced tissue damage. IEEE Trans. Biomed. Eng. 60:906–909, 2012

    Article  PubMed  Google Scholar 

  91. Swaney, P. J., A. W. Mahoney, B. I. Hartley, A. A. Remirez, E. Lamers, R. H. Feins, R. Alterovitz, and R. J. Webster III. Toward transoral peripheral lung access: Combining continuum robots and steerable needles. J. Med. Robot. Res. 2:1–14, 2017

    Article  Google Scholar 

  92. Swaney, P. J., A. W. Mahoney, A. A. Remirez, E. Lamers, B. I. Hartley, R. H. Feins, R. Alterovitz, and R. J. Webster. Tendons, concentric tubes, and a bevel tip: Three steerable robots in one transoral lung access system. in Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 5378–5383.

  93. Tang, L. B., Y. H. Chen, and X. J. He. Magnetic force aided compliant needle navigation and needle performance analysis. in Proc. IEEE Int. Conf. Robot. Biomi., Sanya, China, 2007, pp. 612–616.

  94. Thakur Singh, R. R., I. Tekko, K. McAvoy, H. McMillan, D. Jones, and R. F. Donnelly. Minimally invasive microneedles for ocular drug delivery. Expert Opin. Drug Del. 14:525–537, 2017

    Article  CAS  Google Scholar 

  95. Tillander, H. Magnetic guidance of a catheter with articulated steel tip. Acta Radiol. 35:62–64, 1951

    Article  CAS  PubMed  Google Scholar 

  96. Van de Berg, N. J., D. J. van Gerwen, J. Dankelman, and J. J. van den Dobbelsteen. Design choices in needle steering—a review. IEEE/ASME Trans. Mech. 20:2172–2183, 2015

    Article  Google Scholar 

  97. Van, G., J. Dennis, D. Jenny, and J. John. Needle-tissue interaction forces—a survey of experimental data. Med. Eng. Phys. 34:665–680, 2012

    Article  Google Scholar 

  98. Varnamkhasti, Z. K., and B. Konh. Compact 3D-printed active flexible needle for percutaneous procedures. Surg. Innov. 27:402–405, 2020

    Article  PubMed  Google Scholar 

  99. Varnamkhasti, Z. K., and B. Konh. Design, fabrication, and testing of a flexible three-dimensional printed percutaneous needle with embedded actuators. J. Med. Devices. 15:021007, 2021

    Article  Google Scholar 

  100. Vrooijink, G. J., M. Abayazid, S. Patil, R. Alterovitz, and S. Misra. Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images. Int. J. Robot. Res. 33:1361–1374, 2014

    Article  Google Scholar 

  101. Wang, J., Q. Cong, X. Qi, and Y. Zhang. Optimum structural design and analysis of drag reduction mechanism of bionic needles inspired by cicada stylet. J. Jilin Univ. (Eng. Technol. Ed.). 44:696–700, 2014

    Google Scholar 

  102. Wang, J., X. Yang, P. Li, S. Song, L. Liu, and M.Q.-H. Meng. Design of a multi-arm concentric-tube robot system for transnasal surgery. Med. Biol. Eng. Comput. 58:497–508, 2020

    Article  PubMed  Google Scholar 

  103. Wang, Y. Z., Z. G. Zhou, Y. H. Chen, and H. F. Huang. Towards a magnetic articulated needle. Biotechnol. Chem. Mater. Eng. Adv. Mater. Res. 393:1060–1063, 2012

    Google Scholar 

  104. Webster, R. J., III., J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura. Nonholonomic modeling of needle steering. Int. J. Robot. Res. 25:509–525, 2006

    Article  Google Scholar 

  105. Webster, R. J., A. M. Okamura, and N. J. Cowan. Toward active cannulas: Miniature snake-like surgical robots. in Proc. IEEE Conf. RSJ Intell. Robot. Syst., pp. 2857–2863, 2006.

  106. Wu, L., S. Song, K. Wu, C. M. Lim, and H. Ren. Development of a compact continuum tubular robotic system for nasopharyngeal biopsy. Med. Biol. Eng. Comput. 55:403–417, 2017

    Article  PubMed  Google Scholar 

  107. Xiao, X., H. Poon, C. M. Lim, M.Q.-H. Meng, and H. Ren. Pilot study of trans-oral robotic-assisted needle direct tracheostomy puncture in patients requiring prolonged mechanical ventilation. Front. Robot. AI. 7:1–10, 2020

    Article  Google Scholar 

  108. Yamada, A., S. Naka, N. Nitta, S. Morikawa, and T. Tani. A Loop -Shaped Flexible Mechanism for Robotic Needle Steering. IEEE Robot. Autom. Lett. 3:648–655, 2018

    Article  Google Scholar 

  109. Yang, Z., and L. Zhang. Magnetic actuation systems for miniature robots: a review. Adv. Intell. Syst. 2:2000082, 2020

    Article  Google Scholar 

  110. Yu, H., L. Wu, K. Wu, and H. Ren. Development of a multi-channel concentric tube robotic system with active vision for transnasal nasopharyngeal carcinoma procedures. IEEE Robot. Autom. Lett. 1:1172–1178, 2016

    Article  Google Scholar 

  111. Zhang, B., F. Chen, M. Yang, L. Huang, Z. Du, L. Sun, and W. Dong. Real-time curvature detection of a flexible needle with a bevel tip. Sensors. 18:1–15, 2018

    Google Scholar 

  112. Zhang, Y., and M. Lu. A review of recent advancements in soft and flexible robots for medical applications. Int. J. Med. Robot. Comp. 16:e2096, 2020

    Google Scholar 

  113. Zhang, X., F. Wang, Y. Yu, G. Chen, L. Shang, L. Sun, and Y. Zhao. Bio-inspired clamping microneedle arrays from flexible ferrofluid -configured moldings. Sci. Bull. 64:1110–1117, 2019

    Article  CAS  Google Scholar 

  114. Zhang, W., Y. Zhang, and Y. Liu. Design and control of a bionic needle puncture robot. Int. J. Med. Robot. Comp. 17:e2200, 2021

    Google Scholar 

  115. Zhao, S., D. Gao, M. Zhao, and J. Fu. Trajectory estimation of flexible needle using PVA tissue material. in IOP Conf. Series: Materials Sci Eng. 646:2019, p. 012063.

  116. Zhong, Y., L. Hu, and Y. Xu. Recent advances in design and actuation of continuum robots for medical applications. Actuators. 9(4):142, 2020

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding support from the National Medical Research Council Clinician Scientist grant (NMRC CSA-MOH-000326), the Hong Kong Research Grants Council (RGC) Collaborative Research Fund (CRF C4026-21GF: 2300075; C4063-18G: 2300056), General Research Fund (GRF Ref. No.: N_CUHK.420/22 and 14216022) and (GRS) #3110167#3110137, the Reserve Leader Funding Project of Leading Talent Echelon of Heilongjiang Province of China (No. 2501050628), and China Scholarship Council under CSC 202108230187.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Ren.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Zhang, Y., Lim, C.M. et al. Flexible Needle Steering with Tethered and Untethered Actuation: Current States, Targeting Errors, Challenges and Opportunities. Ann Biomed Eng 51, 905–924 (2023). https://doi.org/10.1007/s10439-023-03163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03163-8

Keywords

Navigation