Skip to main content
Log in

Evaluation of Lung Cancer Patient Response to First-Line Chemotherapy by Integration of Tumor Core Biopsy Metabolomics with Multiscale Modeling

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The standard of care for intermediate (Stage II) and advanced (Stages III and IV) non-small cell lung cancer (NSCLC) involves chemotherapy with taxane/platinum derivatives, with or without radiation. Ideally, patients would be screened a priori to allow non-responders to be initially treated with second-line therapies. This evaluation is non-trivial, however, since tumors behave as complex multiscale systems. To address this need, this study employs a multiscale modeling approach to evaluate first-line chemotherapy response of individual patient tumors based on metabolomic analysis of tumor core biopsies obtained during routine clinical evaluation. Model parameters were calculated for a patient cohort as a function of these metabolomic profiles, previously obtained from high-resolution 2DLC-MS/MS analysis. Evaluation metrics were defined to classify patients as Disease-Control (DC) [encompassing complete-response (CR), partial-response (PR), and stable-disease (SD)] and Progressive-Disease (PD) following first-line chemotherapy. Response was simulated for each patient and compared to actual response. The results show that patient classifications were significantly separated from each other, and also when grouped as DC vs. PD and as CR/PR vs. SD/PD, by fraction of initial tumor radius metric at 6 days post simulated bolus drug injection. This study shows that patient first-line chemotherapy response can in principle be evaluated from multiscale modeling integrated with tumor tissue metabolomic data, offering a first step towards individualized lung cancer treatment prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bamji-Stocke, S., V. van Berkel, D. M. Miller, and H. B. Frieboes. A review of metabolism-associated biomarkers in lung cancer diagnosis and treatment. Metabolomics. 14(6):81, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bearer, E. L., J. S. Lowengrub, H. B. Frieboes, Y. L. Chuang, F. Jin, S. M. Wise, et al. Multiparameter computational modeling of tumor invasion. Cancer Res. 69(10):4493–4501, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buettner, R., J. Wolf, and R. K. Thomas. Lessons learned from lung cancer genomics: the emerging concept of individualized diagnostics and treatment. J. Clin. Oncol. 31(15):1858–1865, 2013.

    Article  CAS  PubMed  Google Scholar 

  4. Cardarella, S., T. M. Ortiz, V. A. Joshi, M. Butaney, D. M. Jackman, D. J. Kwiatkowski, et al. The introduction of systematic genomic testing for patients with non-small-cell lung cancer. J. Thorac. Oncol. 7(12):1767–1774, 2012.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, Y., Z. Ma, A. Li, H. Li, B. Wang, J. Zhong, et al. Metabolomic profiling of human serum in lung cancer patients using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry and gas chromatography/mass spectrometry. J. Cancer Res. Clin. Oncol. 141(4):705–718, 2015.

    Article  CAS  PubMed  Google Scholar 

  6. Cristini, V., H. B. Frieboes, R. Gatenby, S. Caserta, M. Ferrari, and J. Sinek. Morphologic instability and cancer invasion. Clin. Cancer Res. 11(19 Pt 1):6772–6779, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. Curtis, L. T., C. G. England, M. Wu, J. Lowengrub, and H. B. Frieboes. An interdisciplinary computational/experimental approach to evaluate drug-loaded gold nanoparticle tumor cytotoxicity. Nanomedicine (Lond). 11(3):197–216, 2016.

    Article  CAS  PubMed  Google Scholar 

  8. Curtis, L. T., V. H. van Berkel, and H. B. Frieboes. Pharmacokinetic/pharmacodynamic modeling of combination-chemotherapy for lung cancer. J. Theor. Biol. 448:38–52, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daghir-Wojtkowiak, E., P. Wiczling, M. Waszczuk-Jankowska, R. Kaliszan, and M. J. Markuszewski. Multilevel pharmacokinetics-driven modeling of metabolomics data. Metabolomics. 13(3):31, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fan, T. W., A. N. Lane, R. M. Higashi, M. Bousamra 2nd., G. Kloecker, and D. M. Miller. Metabolic profiling identifies lung tumor responsiveness to erlotinib. Exp. Mol. Pathol. 87(1):83–86, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Frieboes, H. B., X. Zheng, C. H. Sun, B. Tromberg, R. Gatenby, and V. Cristini. An integrated computational/experimental model of tumor invasion. Cancer Res. 66(3):1597–1604, 2006.

    Article  CAS  PubMed  Google Scholar 

  12. Frieboes, H. B., L. T. Curtis, M. Wu, K. Kani, and P. Mallick. Simulation of the protein-shedding kinetics of a fully vascularized tumor. Cancer Inform. 14:163–175, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Govindan, R., L. Ding, M. Griffith, J. Subramanian, N. D. Dees, K. L. Kanchi, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 150(6):1121–1134, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hori, S., S. Nishiumi, K. Kobayashi, M. Shinohara, Y. Hatakeyama, Y. Kotani, et al. A metabolomic approach to lung cancer. Lung Cancer. 74(2):284–292, 2011.

    Article  PubMed  Google Scholar 

  15. Leighl, N. B. Treatment paradigms for patients with metastatic non-small-cell lung cancer: first-, second-, and third-line. Curr. Oncol. 19(Suppl 1):S52–S58, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leonard, F., L. T. Curtis, P. Yesantharao, T. Tanei, J. F. Alexander, M. Wu, et al. Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions. Nanoscale. 8(25):12544–12552, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leonard, F., L. T. Curtis, M. J. Ware, T. Nosrat, X. Liu, K. Yokoi, et al. Macrophage polarization contributes to the anti-tumoral efficacy of mesoporous nanovectors loaded with albumin-bound paclitaxel. Front. Immunol. 8:693, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Leonard, F., L. T. Curtis, A. R. Hamed, C. Zhang, E. Chau, D. Sieving, et al. Nonlinear response to cancer nanotherapy due to macrophage interactions revealed by mathematical modeling and evaluated in a murine model via CRISPR-modulated macrophage polarization. Cancer Immunol. Immunother. 69:731, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lovly, C., Horn, L., Pao, W. Molecular Profiling of Lung Cancer. My Cancer Genome 2018 [cited 2018 October 1, 2018]. Available from: https://www.mycancergenome.org/content/disease/lung-cancer/

  20. Macklin, P., S. McDougall, A. R. Anderson, M. A. Chaplain, V. Cristini, and J. Lowengrub. Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58(4–5):765–798, 2009.

    Article  PubMed  Google Scholar 

  21. Mahlbacher, G., L. T. Curtis, J. Lowengrub, and H. B. Frieboes. Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment. J. Immunother. Cancer. 6:10, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marx, V. Biology: the big challenges of big data. Nature. 498(7453):255–260, 2013.

    Article  CAS  PubMed  Google Scholar 

  23. Masters, G. A., S. Temin, C. G. Azzoli, G. Giaccone, S. Baker Jr., J. R. Brahmer, et al. Systemic therapy for stage IV non-small-cell lung cancer: american society of clinical oncology clinical practice guideline update. J. Clin. Oncol. 33(30):3488–3515, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McDougall, S. R., A. R. Anderson, and M. A. Chaplain. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241(3):564–589, 2006.

    Article  PubMed  Google Scholar 

  25. Medina, M. A. Mathematical modeling of cancer metabolism. Crit. Rev. Oncol. Hematol. 124:37–40, 2018.

    Article  PubMed  Google Scholar 

  26. Mendoza-Juez, B., A. Martinez-Gonzalez, G. F. Calvo, and V. M. Perez-Garcia. A mathematical model for the glucose-lactate metabolism of in vitro cancer cells. Bull. Math. Biol. 74(5):1125–1142, 2012.

    Article  CAS  PubMed  Google Scholar 

  27. Miller, H. A., and H. B. Frieboes. Pharmacokinetic/pharmacodynamics modeling of drug-loaded PLGA nanoparticles targeting heterogeneously vascularized tumor tissue. Pharm. Res. 36(12):185, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller, H. A., and H. B. Frieboes. Evaluation of drug-loaded gold nanoparticle cytotoxicity as a function of tumor vasculature-induced tissue heterogeneity. Ann. Biomed. Eng. 47(1):257–271, 2019.

    Article  PubMed  Google Scholar 

  29. Miller, H. A., R. Emam, C. M. Lynch, S. Bockhorst, and H. B. Frieboes. Discrepancies in metabolomic biomarker identification from patient-derived lung cancer revealed by combined variation in data pre-treatment and imputation methods. Metabolomics. 17(4):37, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller, H. A., X. Yin, S. A. Smith, X. Hu, X. Zhang, J. Yan, et al. Evaluation of disease staging and chemotherapeutic response in non-small cell lung cancer from patient tumor-derived metabolomic data. Lung Cancer. 156:20–30, 2021.

    Article  CAS  PubMed  Google Scholar 

  31. Miller, H. A., V. van Berkel, and H. B. Frieboes. Lung cancer survival prediction and biomarker identification with an ensemble machine-learning analysis of tumor core biopsy metabolomic data. Metabolomics. 18(8):57, 2022.

    Article  CAS  PubMed  Google Scholar 

  32. Miller, H. A., J. Lowengrub, and H. B. Frieboes. Modeling of tumor growth with input from patient-specific metabolomic data. Ann. Biomed. Eng. 50(3):314–329, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Miller, H. A., S. N. Rai, X. Yin, X. Zhang, J. A. Chesney, V. van Berkel, et al. Lung cancer metabolomic data from tumor core biopsies enables risk-score calculation for progression-free and overall survival. Metabolomics. 18(5):31, 2022.

    Article  CAS  PubMed  Google Scholar 

  34. Peng, F., Y. Liu, C. He, Y. Kong, Q. Ouyang, X. Xie, et al. Prediction of platinum-based chemotherapy efficacy in lung cancer based on LC-MS metabolomics approach. J. Pharm. Biomed. Anal. 154:95–101, 2018.

    Article  CAS  PubMed  Google Scholar 

  35. Roy, M., and S. D. Finley. Computational model predicts the effects of targeting cellular metabolism in pancreatic cancer. Front. Physiol. 8:217, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Roy, M., and S. D. Finley. Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model. PLoS Comput. Biol. 15(6):e1007053, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schiller, J. H., D. Harrington, C. P. Belani, C. Langer, A. Sandler, J. Krook, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 346(2):92–98, 2002.

    Article  CAS  PubMed  Google Scholar 

  38. Sriyudthsak, K., F. Shiraishi, and M. Y. Hirai. Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data. Front. Mol. Biosci. 3:15, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tian, Y., Z. Wang, X. Liu, J. Duan, G. Feng, Y. Yin, et al. Prediction of chemotherapeutic efficacy in non-small cell lung cancer by serum metabolomic profiling. Clin. Cancer Res. 24(9):2100–2109, 2018.

    Article  CAS  PubMed  Google Scholar 

  40. Vázquez-Gandullo, E., M. González, A. J. Ruiz-Reina, T. García-Barrena, R. A. Pérez-Grovas, J. Grávalos-Guzmán, et al. Metabolomic analysis of serum samples from patients with lung cancer. Eur. Respir. J. 44:P2702, 2014.

    Google Scholar 

  41. van de Ven, A. L., M. Wu, J. Lowengrub, S. R. McDougall, M. A. Chaplain, V. Cristini, et al. Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP Adv. 2(1):11208, 2012.

    Article  PubMed  Google Scholar 

  42. Ware, M. J., L. T. Curtis, M. Wu, J. C. Ho, S. J. Corr, S. A. Curley, et al. Pancreatic adenocarcinoma response to chemotherapy enhanced with non-invasive radio frequency evaluated via an integrated experimental/computational approach. Sci. Rep. 7(1):3437, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wen, T., L. Gao, Z. Wen, C. Wu, C. S. Tan, W. Z. Toh, et al. Exploratory investigation of plasma metabolomics in human lung adenocarcinoma. Mol. Biosyst. 9(9):2370–2378, 2013.

    Article  CAS  PubMed  Google Scholar 

  44. Wu, M., H. B. Frieboes, S. R. McDougall, M. A. Chaplain, V. Cristini, and J. Lowengrub. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J. Theor. Biol. 320:131–151, 2013.

    Article  PubMed  Google Scholar 

  45. Yizhak, K., B. Chaneton, E. Gottlieb, and E. Ruppin. Modeling cancer metabolism on a genome scale. Mol. Syst. Biol. 11(6):817, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zaal, E. A., and C. R. Berkers. The influence of metabolism on drug response in cancer. Front. Oncol. 8:500, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zappa, C., and S. A. Mousa. Non-small cell lung cancer: current treatment and future advances. Transl. Lung Cancer Res. 5(3):288–300, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

DMM, VvB, HBF acknowledge support by National Cancer Institute Grant R15CA203605 (Frieboes).

Conflict of interest

The authors declare no known conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann B. Frieboes.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1534 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, H.A., Miller, D.M., van Berkel, V.H. et al. Evaluation of Lung Cancer Patient Response to First-Line Chemotherapy by Integration of Tumor Core Biopsy Metabolomics with Multiscale Modeling. Ann Biomed Eng 51, 820–832 (2023). https://doi.org/10.1007/s10439-022-03096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03096-8

Keywords

Navigation