Skip to main content
Log in

Development and Characterization of a Nonelectronic Versatile Oxygenating Perfusion System for Tissue Preservation

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Oxygenated machine perfusion of human organs has been shown to improve both preservation quality and time duration when compared to the current gold standard: static cold storage. However, existing machine perfusion devices designed for preservation and transportation of transplantable organs are too complicated and organ-specific to merit use as a solution for all organs. This work presents a novel, portable, and nonelectronic device potentially capable of delivering oxygenated machine perfusion to a variety of organs. An innovative pneumatic circuit system regulates a compressed oxygen source that cyclically inflates and deflates silicone tubes, which function as both the oxygenator and perfusion pump. Different combinations of silicone tubes in single or parallel configurations, with lengths ranging from 1.5 to 15.2 m, were evaluated at varying oxygen pressures from 27.6 to 110.3 kPa. The silicone tubes in parallel configurations produced higher peak perfusion pressures (70% increase), mean flow rates (102% increase), and oxygenation rates (268% increase) than the single silicone tubes that had equivalent total lengths. While pumping against a vascular resistance element that mimicked a kidney, the device achieved perfusion pressures (8.4–131.6 mmHg), flow rates (2.0–40.2 mL min−1), and oxygenation rates (up to 388 μmol min−1) that are consistent with values used in previous kidney preservation studies. The nonelectronic device achieved those perfusion parameters using 4.4 L min−1 of oxygen to operate. These results demonstrate that oxygenated machine perfusion can be successfully achieved without any electronic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

MP:

Machine perfusion

PBS:

Phosphate buffered saline

PVC:

Polyvinyl chloride

SCS:

Static cold storage

VOPS:

Versatile oxygenating perfusion system

L :

Length of tube (m)

R :

Vascular resistance (mmHg min mL−1)

r :

Inner radius of tube (m)

µ :

Greek, small letter Mu, viscosity of PBS (Pa s)

\(\dot{O}\) 2 :

Oxygenation rate (μmol min−1)

H c :

Van ‘t Hoff relationship (mol m−3 Pa−1)

V sol :

Volume of perfusion solution in device (m3)

ΔP dev :

Change in device pressure (Pa)

t trial :

Time of trial (min)

K :

Henry’s law solubility constant for oxygen (mol m3 Pa−1)

H :

Temperature dependence of the Henry solubility constant (K)

T amb :

Ambient temperature (K)

T o :

Reference temperature (K)

P amb :

Ambient pressure (Pa)

V i :

Initial volume of oxygen in tank (m3)

m i :

Initial mass of oxygen in tank (kg)

R :

Universal gas constant (J mol−1 K−1)

\({M}_{{\text{O}}_{2}}\) :

Molar mass of oxygen (mol kg−1)

m f :

Final mass of oxygen in tank (kg)

P f :

Final pressure of oxygen tank (Pa)

P i :

Initial pressure of oxygen tank (Pa)

\({Q}_{{\text{O}}_{2}}\) :

Volumetric flow rate of oxygen (L min−1)

\({\rho }_{{\text{O}}_{2}}\) :

Greek, small letter Rho, density of oxygen (kg m3)

t total :

Time between oxygen tank pressure readings (min)

References

  1. Chandan, G., and M. Cascella. Gas Laws and Clinical Application. 2019.

  2. Chung, K. C., and A. K. Alderman. Replantation of the upper extremity: indications and outcomes. J. Am. Soc. Surg. Hand. 2:78–94, 2002.

    Article  Google Scholar 

  3. D’Alessandro, A. M., J. H. Southard, R. B. Love, and F. O. Belzer. Organ preservation. Surg. Clin. N. Am. 74:1083–1095, 1994.

    Article  CAS  PubMed  Google Scholar 

  4. de Vries, R. J., M. Yarmush, and K. Uygun. Systems engineering the organ preservation process for transplantation. Curr. Opin. Biotechnol. 58:192–201, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dillingham, T. R., L. E. Pezzin, and E. J. MacKenzie. Limb amputation and limb deficiency: epidemiology and recent trends in the United States. Southern Med. J. 95:875–884, 2002.

    PubMed  Google Scholar 

  6. Doorschodt, B., M. Schreinemachers, M. Behbahani, S. Florquin, J. Weis, M. Staat, and R. Tolba. Hypothermic machine perfusion of kidney grafts: which pressure is preferred? Ann. Biomed. Eng. 39:1051–1059, 2011.

    Article  CAS  PubMed  Google Scholar 

  7. Feng, C.-P., L.-B. Chen, G.-L. Tian, S.-S. Wan, L. Bai, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang, and W. Yang. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics. ACS Appl. Mater. Interfaces. 11:18739–18745, 2019.

    Article  CAS  PubMed  Google Scholar 

  8. Gannon, M. Miniaturization Makes Pneumatics the Choice in Medical Applications. 2014.

  9. Goldberg, D., B. French, P. Abt, and R. Gilroy. Increasing the number of organ transplants in the United States by optimizing donor authorization rates. Am. J. Transpl. 15:2117–2125, 2015.

    Article  CAS  Google Scholar 

  10. Guibert, E. E., A. Y. Petrenko, C. L. Balaban, A. Y. Somov, J. V. Rodriguez, and B. J. Fuller. Organ preservation: current concepts and new strategies for the next decade. Transf. Med. Hemotherapy. 38:125–142, 2011.

    Article  Google Scholar 

  11. Hicks, M., A. Hing, L. Gao, J. Ryan, and P. S. MacDonald. Organ preservation. Transpl Immunol. 13:331–373, 2006.

    Article  Google Scholar 

  12. Hosgood, S. A., B. Yang, A. Bagul, I. H. Mohamed, and M. L. Nicholson. A comparison of hypothermic machine perfusion versus static cold storage in an experimental model of renal ischemia reperfusion injury. Transplantation. 89:830–837, 2010.

    Article  PubMed  Google Scholar 

  13. Hostetler, S. G., L. Schwartz, B. J. Shields, H. Xiang, and G. A. Smith. Characteristics of pediatric traumatic amputations treated in hospital emergency departments: United States, 1990–2002. Pediatrics. 116:e667–e674, 2005.

    Article  PubMed  Google Scholar 

  14. Houtzager, J. H., S. D. Hemelrijk, I. C. Post, M. M. Idu, F. J. Bemelman, and T. M. van Gulik. The use of the oxygenated AirdriveTM machine perfusion system in kidney graft preservation: a clinical pilot study. Eur. Surg. Res. 61:153–162, 2020.

    Article  PubMed  Google Scholar 

  15. Jing, L., L. Yao, M. Zhao, L. Peng, and M. Liu. Organ preservation: from the past to the future. Acta Pharmacol Sin. 39:845–857, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaminski, J., P. Delpech, S. Kaaki-Hosni, X. Promeyrat, T. Hauet, and P. Hannaert. Oxygen consumption by warm ischemia-injured porcine kidneys in hypothermic static and machine preservation. J. Surg. Res. 242:78–86, 2019.

    Article  CAS  PubMed  Google Scholar 

  17. Kirnap, M., and M. Haberal. Organ preservation. Transplantation surgery. New York: Springer, pp. 89–102, 2021.

    Book  Google Scholar 

  18. Lloyd, M., T. Teo, M. Pickford, and P. Arnstein. Preoperative management of the amputated limb. Emerg. Med. J. 22:478–480, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mazzantini, L., M. Dimitri, F. Staderini, F. Cianchi, and A. Corvi. Design and realization of a normothermic perfusion system for laboratory tests on pig liver. Int. J. Artif. Organs. 43:3–9, 2020.

    Article  PubMed  Google Scholar 

  20. Nowadly, C., D. J. Portillo, M. Davis, L. Hood, and R. De Lorenzo. The use of portable oxygen concentrators in low-resource settings: a systematic review. Prehospital Disaster Med. 37:247–254, 2022.

    Article  Google Scholar 

  21. O’Callaghan, J., K. Pall, and L. Pengel. Supplemental oxygen during hypothermic kidney preservation: a systematic review. Transpl. Rev. 31:172–179, 2017.

    Article  CAS  Google Scholar 

  22. OCS Liver Information. https://www.transmedics.com/ocs-hcp-liver/.

  23. Patel, S., O. Pankewycz, N. Nader, M. Zachariah, R. Kohli, and M. Laftavi. Prognostic utility of hypothermic machine perfusion in deceased donor renal transplantation. Transpl. Proc. 44:2207–2212, 2012.

    Article  CAS  Google Scholar 

  24. Patel, K., T. B. Smith, D. A. Neil, A. Thakker, Y. Tsuchiya, E. B. Higgs, N. J. Hodges, A. R. Ready, J. Nath, and C. Ludwig. The effects of oxygenation on ex vivo kidneys undergoing hypothermic machine perfusion. Transplantation. 103:314–322, 2019.

    Article  CAS  PubMed  Google Scholar 

  25. Petrenko, A., M. Carnevale, A. Somov, J. Osorio, J. Rodríguez, E. Guibert, B. Fuller, and F. Froghi. Organ Preservation into the 2020s: the era of dynamic intervention. Transf. Med. Hemotherapy. 46:151–172, 2019.

    Article  Google Scholar 

  26. Pinezich, M., and G. Vunjak-Novakovic. Bioengineering approaches to organ preservation ex vivo. Exp. Biol. Med. 244:630–645, 2019.

    Article  CAS  Google Scholar 

  27. Portillo, D. J., L. Bayliss, S. Rivas, G. Pineda, S. Kaur, L. Bunegin, and R. L. Hood. Characterizing and tuning perfusion parameters within an innovative, versatile oxygenating perfusion system. Ann. Biomed. Eng. 49:1–11, 2021.

    Article  Google Scholar 

  28. Portillo, D. J., E. N. Hoffman, M. Garcia, E. LaLonde, E. Hernandez, C. S. Combs, and L. Hood. Modal Analysis of a Sweeping Jet Emitted by a Fluidic Oscillator. AIAA AVIATION 2021 FORUM. 2835, 2021.

  29. Post, I. C., M. C. Dirkes, M. Heger, R. Bezemer, J. van’t Leven, and T. M. van Gulik. Optimal flow and pressure management in machine perfusion systems for organ preservation. Ann. Biomed. Eng. 40:2698–2707, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rana, A., A. Gruessner, V. G. Agopian, Z. Khalpey, I. B. Riaz, B. Kaplan, K. J. Halazun, R. W. Busuttil, and R. W. Gruessner. Survival benefit of solid-organ transplant in the United States. JAMA Surg. 150:252–259, 2015.

    Article  PubMed  Google Scholar 

  31. Ravaioli, M., V. De Pace, A. Angeletti, G. Comai, F. Vasuri, M. Baldassarre, L. Maroni, F. Odaldi, G. Fallani, and P. Caraceni. Hypothermic oxygenated new machine perfusion system in liver and kidney transplantation of extended criteria donors: first Italian clinical trial. Sci. Rep. 10:1–11, 2020.

    Article  Google Scholar 

  32. Tay, T.-T., I. Mareels, and J. B. Moore; High performance control; Springer Science & Business Media; 1998, pp.

  33. Urbanellis, P., M. Hamar, J. M. Kaths, D. Kollmann, I. Linares, L. Mazilescu, S. Ganesh, A. Wiebe, P. M. Yip, and R. John. Normothermic ex vivo kidney perfusion improves early DCD graft gunction compared with hypothermic machine perfusion and static cold storage. Transplantation. 104:947–955, 2020.

    Article  CAS  PubMed  Google Scholar 

  34. U.S. Department of Health and Human Services. Organ Procurement and Transplantation Network, National Data. 2020.

  35. van Suylen, V., K. Vandendriessche, A. Neyrinck, F. Nijhuis, A. van der Plaats, E. K. Verbeken, P. Vermeersch, B. Meyns, M. A. Mariani, and F. Rega. Oxygenated machine perfusion at room temperature as an alternative for static cold storage in porcine donor hearts. Artif. Organs. 46:246–258, 2022.

    Article  PubMed  Google Scholar 

  36. Xu, J., J. E. Buchwald, and P. N. Martins. Review of current machine perfusion therapeutics for organ preservation. Transplantation. 104:1792–1803, 2020.

    Article  CAS  PubMed  Google Scholar 

  37. XVIVO Perfusion System (XPS) Summary of Safety and Effectiveness Data. 2019.

  38. Yuan, X., A. J. Theruvath, X. Ge, B. Floerchinger, A. Jurisch, G. García-Cardeña, and S. G. Tullius. Machine perfusion or cold storage in organ transplantation: indication, mechanisms, and future perspectives. Transpl. Int. 23:561–570, 2010.

    Article  PubMed  Google Scholar 

  39. Zimrin, T., Y. F. Haruvy, and S. Margel. High-resolution measurements of water permeability and solubility in microelectronic-casing made of a hydrophobic polymeric composite. J. Appl. Polym. Sci. 102:4523–4527, 2006.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded through a Department of Defense PRMRP; Award Number: W81XWH-18-1-0640. The authors would like to thank Dr. Ender Finol and Dr. Christopher Combs for providing data collection equipment and David Kuenstler for assisting with the fabrication of the VOPS.

Conflict of interest

This team has filed for a provisional patent that includes the design and operation of the device described in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lyle Hood.

Additional information

Associate Editor Emmanuel Opara oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portillo, D.J., Gonzalez, J., Villarreal, C. et al. Development and Characterization of a Nonelectronic Versatile Oxygenating Perfusion System for Tissue Preservation. Ann Biomed Eng 50, 978–990 (2022). https://doi.org/10.1007/s10439-022-02977-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02977-2

Keywords

Navigation