Skip to main content
Log in

The Effect of MIPS, Headform Condition, and Impact Orientation on Headform Kinematics Across a Range of Impact Speeds During Oblique Bicycle Helmet Impacts

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bicycle helmets are designed to attenuate both the linear and rotational response of the head during an oblique impact. Here we sought to quantify how the effectiveness of one popular rotation-attenuating system (MIPS) varied across 3 test headform conditions (bare, covered in stockings, and hair), 3 oblique impact orientations, and 4 impact speeds. We conducted 72 freefall drop tests of a single helmet model with and without MIPS onto a 45° angled anvil and measured the peak linear (PLA) and angular acceleration (PAA) and computed the angular velocity change (PAV) and brain injury criterion (BrIC). Across all headform conditions, MIPS reduced PAA and PAV by 38.2 and 33.2% respectively during X-axis rotation, 47.4 and 38.1% respectively during Y-axis rotation, and 22.9 and 20.5% during a combined ZY-axis rotation. Across all impact orientations, PAA was reduced by 39% and PAV by 32.4% with the bare headform while adding stockings reduced PAA and PAV by 41.6 and 36% respectively and the hair condition reduced PAA and PAV by 30.2 and 24.4% respectively. In addition, our data reveal the importance of using consistent headform conditions when evaluating the effect of helmet systems designed to attenuate head rotations during oblique impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aare, M., and P. Halldin. A new laboratory rig for evaluating helmets subject to oblique impacts. Traffic Inj. Prev. 4(3):240–248, 2003. https://doi.org/10.1080/15389580309879.

    Article  PubMed  Google Scholar 

  2. Abayazid, F., K. Ding, K. Zimmerman, et al. A new assessment of bicycle helmets: the brain injury mitigation effects of new technologies in oblique impacts. Ann. Biomed. Eng. 49:2716–2733, 2021. https://doi.org/10.1007/s10439-021-02785-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bland, M. L., C. McNally, J. B. Cicchino, et al. Laboratory reconstructions of bicycle helmet damage: investigation of head impacts using oblique impact and CT. Ann. Biomed. Eng. 2020. https://doi.org/10.1007/s10439-020-02620-y.

    Article  PubMed  Google Scholar 

  4. Bland, M. L., C. McNally, and S. Rowson. Differences in impact performance of bicycle helmets during oblique impacts. J. Biomech. Eng. 140:091005, 2018.

  5. Bland, M. L., C. McNally, D. S. Zuby, et al. Development of the STAR evaluation system for assessing bicycle helmet protective performance. Ann. Biomed. Eng. 48(1):47–57, 2020. https://doi.org/10.1007/s10439-019-02330-0.

    Article  PubMed  Google Scholar 

  6. Bliven, E., A. Rouhier, S. Tsai, et al. Evaluation of a novel bicycle helmet concept in oblique impact testing. Accid. Anal. Prev. 124:58–65, 2019. https://doi.org/10.1016/j.aap.2018.12.017.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bonin, S. J., A. L. DeMarco, and G. P. Siegmund. The effect of hair and football helmet fit on headform kinematics. International Research Council on Biomechanics of Injury Conference. Athens, Greece, September 12–14, 2018.

  8. Bottlang, M., A. Rouhier, S. Tsai, et al. Impact performance comparison of advanced bicycle helmets with dedicated rotation-damping systems. Ann. Biomed. Eng. 48(1):68–78, 2020. https://doi.org/10.1007/s10439-019-02328-8.

    Article  PubMed  Google Scholar 

  9. Bourdet, N., C. Deck, R. P. Carriera, et al. Head impact conditions in the case of cyclist falls. Proc. IMechE Part P: J. Sport Eng. Technol. 226(3/4):282–289, 2012.

    Google Scholar 

  10. Cameron, M., C. Finch, P. Vulcan. Protective performance of bicycle helmets introduced at the same time as the bicycle helmet wearing law in Victoria. Monash University Accident Research Center Report No. 59, 1994.

  11. Chinn B., B. Canaple, S. Derler, et al. COST 327 Motorcycle safety helmets. European Commission, Directorate General for Energy and Transport, 2001.

  12. Cobb, B. R., A. M. Zadnik, and S. Rowson. Comparative analysis of helmeted impact response of Hybrid III and National Operating Committee on Standards for Athletic Equipment headforms. Proc. IMechE Part P: J. Sport Eng. Technol. 230(1):50–60, 2015.

    Google Scholar 

  13. Consumer Product Safety Commission. 16 CFR Part 1203. Safety Standard for Bicycle Helmets; Final Rule, 1998.

  14. Ebrahimi, I., F. Golnaraghi, and G. G. Wang. Factors influencing the oblique impact test of motorcycle helmets. Traffic Inj. Prev. 16:404–408, 2015. https://doi.org/10.1080/15389588.2014.937804.

    Article  PubMed  Google Scholar 

  15. Fahlstedt, M., K. Baeck, P. Halldin, et al. Influence of impact velocity and angle in a detailed reconstruction of a bicycle accident. International Research Council on Biomechanics of Injury Conference. Dublin, Ireland, September 12–14, 2012.

  16. Fahlstedt, M., P. Hallidin, and S. Kleiven. The protective effect of a helmet in three bicycle accidents. Accid Anal. Prev. 91:135–143, 2016. https://doi.org/10.1016/j.aap.2016.02.025.

    Article  PubMed  Google Scholar 

  17. Gennarelli, T. A., L. E. Thibault, and A. K. Ommaya. Pathophysiologic responses to rotational and translational accelerations of the head. Proc. Stapp Car Crash Conf. 720970:296–308, 1972.

    Google Scholar 

  18. Ghajari, G., M. S. Peldschus, U. Galvenetto, et al. Effects of the presence of the body in helmet oblique impacts. Accid. Anal. Prev. 50:263–271, 2013. https://doi.org/10.1016/j.aap.2012.04.016.

    Article  PubMed  Google Scholar 

  19. Gurdjian, E. S., V. L. Roberts, and L. M. Thomas. Tolerance curves of acceleration and intracranial pressure and protective index in experimental head injury. J. Trauma. 6(5):600–604, 1966. https://doi.org/10.1097/00005373-196609000-00005.

    Article  CAS  PubMed  Google Scholar 

  20. Hansen, K., N. Dau, F. Feist, et al. Angular impact mitigation system for bicycle helmets to reduce head acceleration and risk for traumatic brain injury. Accid. Anal. Prev. 59:109–117, 2013. https://doi.org/10.1016/j.aap.2013.05.019.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Holbourn, A. H., M. A. Edin, and D. P. Oxfd. Mechanics of head injuries. The Lancet. 242(6267):438–441, 1943.

    Article  Google Scholar 

  22. Jadischke, R., D. C. Viano, J. McCarthy, et al. The effects of helmet weight on Hybrid III head and neck responses by comparing unhelmeted and helmeted impacts. J. Biomech. Eng. 138:101008, 2016.

  23. Kendall, M., E. S. Walsh, and T. B. Hoshizaki. Comparison between Hybrid III and Hodgson-WSU headforms by linear and angular dynamic impact response. Proc. IMechE Part P: J. Sports Eng. Technol. 226(304):260–265, 2012.

    Google Scholar 

  24. Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51:81–114, 2007.

    PubMed  Google Scholar 

  25. Klug, C., F. Feist, E. Tomasch. Testing of bicycle helmets for preadolescents. International Research Council on Biomechanics of Injury Conference, Lyon, France, September 9-11, 2015.

  26. Lissner, H. R., M. Lebow, and F. Gaynor Evans. Experimental studies on the relation between acceleration and intracranial pressure changes in man. J. Surg. Gyn. Obst. 111:329–38, 1960.

    CAS  Google Scholar 

  27. McIntosh, A. S., A. Lai, and E. Schilter. Bicycle helmets: head impact dynamics in helmeted and unhelmeted oblique impact tests. Traffic Inj. Prev. 14:501–508, 2013. https://doi.org/10.1080/15389588.2012.727217.

    Article  PubMed  Google Scholar 

  28. Meng, S., A. Cernicchi, S. Kleiven, et al. The biomechanical differences of shock absorption test methods in the US and European helmet standards. Int. J. Crashworthiness. 24(4):399–412, 2019. https://doi.org/10.1080/13588265.2018.1464545.

    Article  Google Scholar 

  29. Mills, N. J., and A. Gilchrist. Oblique impact testing of bicycle helmets. Int. J. Impact Eng. 35:1075–1086, 2008. https://doi.org/10.1016/J.IJIMPENG.2007.05.005.

    Article  Google Scholar 

  30. Nahum, A. M., R. Smith, C. C. Ward. Intracranial pressure dynamics during head impact. Proceedings of the 21st Stapp Car Crash Conf. 770922:339–366, 1977.

  31. Newman, J. A., M. C. Beusenberg, N. Schewchenko, et al. Verification of biomechanical methods employed in a comprehensive study of mild traumatic brain injury and the effectiveness of American football helmets. J. Biomech. 38:1469–1481, 2005. https://doi.org/10.1016/j.jbiomech.2004.06.025.

    Article  CAS  PubMed  Google Scholar 

  32. Ommaya, K. A., and A. E. Hirsch. Tolerances for cerebral concussion from head impact and whiplash in primates. J. Biomech. 4:13–21, 1971. https://doi.org/10.1016/0021-9290(71)90011-x.

    Article  CAS  PubMed  Google Scholar 

  33. Padgaonkar, A. J., K. W. Krieger, and A. I. King. Measurement of angular acceleration of a rigid body using linear accelerometers. J. Appl. Mech. 42(3):552–556, 1975.

    Article  Google Scholar 

  34. Pellman, E. J., D. C. Viano, A. M. Tucker, et al. Concussion in professional football—reconstruction of game impacts and injuries. Neurosurgery. 53(4):799–814, 2003. https://doi.org/10.1093/neurosurgery/53.3.799.

    Article  PubMed  Google Scholar 

  35. Peng, Y., Y. Chen, J. Yang, et al. A study of pedestrian and bicyclist exposure to head injury in passenger car collisions based on accident data and simulations. Saf. Sci. 50:1749–1759, 2012. https://doi.org/10.1016/J.SSCI.2012.03.005.

    Article  Google Scholar 

  36. Rice, S., M. A. Iaccarino, S. Bhatnager, et al. Reporting of concussion-like symptoms after cycling crashes. J. Athletic Train. 55(1):11–16, 2020. https://doi.org/10.4085/1062-6050-91-19.

    Article  Google Scholar 

  37. SAE International. Instrumentation for Impact Test—Part 1—Electronic Instrumentation, J211/1_201403, 2014.

  38. Smith, T. A., D. Tees, D. R. Thom, et al. Evaluation and replication of impact damage to bicycle helmets. Accid. Anal. Prev. 26(6):795–802, 1994. https://doi.org/10.1016/0001-4575(94)90055-8.

    Article  CAS  PubMed  Google Scholar 

  39. Stigson, H., M. Rizzi, A. Ydenius, et al. Consumer testing of bicycle helmets. International Research Council on the Biomechanics of Injury Conference, Antwerp, Belgium, September 13–15, 2017.

  40. Strich, S. J., and D. M. Oxon. Shearing of nerve fibers as a cause of brain damage due to head injury. Lancet. 26:443–8, 1961. https://doi.org/10.1016/S0140-6736(61)92426-6.

    Article  Google Scholar 

  41. Takhounts, E. G., M. J. Craig, K. Moorhouse, et al. Development of brain injury criteria (BrIC). Stapp Car Crash J. 57:243–266, 2013.

    PubMed  Google Scholar 

  42. Thomas, L. M., V. L. Roberts, and E. S. Gurdjian. Experimental intracranial pressure gradients in the human skull. J. Neurol. Neurosurg. Psychiat. 29:404–412, 1966. https://doi.org/10.1136/jnnp.29.5.404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trotta, A., A. Annaidh, R. Burek, et al. Evaluation of the head-helmet sliding properties in an impact test. J. Biomech. 75:28–34, 2018. https://doi.org/10.1016/j.jbiomech.2018.05.003.

    Article  PubMed  Google Scholar 

  44. Trotta, A., D. Zouzias, G. D. Bruyne, et al. The importance of the scalp in head impact kinematics. Ann. Biomed. Eng. 46:831–840, 2018. https://doi.org/10.1007/s10439-018-2003-0.

    Article  PubMed  Google Scholar 

  45. Unterharnscheidt, F. J., L. S. Higgins. Neuropathological effects transitional and rotational accel of the head in animal experiments. in: The late effect of head injury. C. C. Thomas, 17:158–67, 1969.

  46. Verschueren, P. Biomechanical analysis of head injuries related to bicycle accidents and a new bicycle helmet concept. Katholieke Universiteit Leuven, PhD Thesis, 2009.

  47. Zouzias, D., G. D. Bruyne, A. N. Annaidh, et al. The effect of the scalp on effectiveness of bicycle helmets’ anti-rotation acceleration technology. Traffic Inj. Prev. 22(1):51–56, 2021. https://doi.org/10.1080/15389588.2020.1841179.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jeff Nickel and Mircea Oala-Florescu for their assistance with the experimental set-up.

Conflict of interest

All of the authors are employees of MEA Forensic Engineers & Scientists and their work may benefit from this research. Author GPS is an owner and director of MEA Forensic Engineers & Scientists. MIPS AB provided guidance in fabricating our helmet drop tower.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie J. Bonin.

Additional information

Associate Editor Megan L. Bland oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonin, S.J., DeMarco, A.L. & Siegmund, G.P. The Effect of MIPS, Headform Condition, and Impact Orientation on Headform Kinematics Across a Range of Impact Speeds During Oblique Bicycle Helmet Impacts. Ann Biomed Eng 50, 860–870 (2022). https://doi.org/10.1007/s10439-022-02961-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02961-w

Keywords

Navigation