Skip to main content
Log in

Intramural Distributions of GAGs and Collagen vs. Opening Angle of the Intact Porcine Aortic Wall

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

This article has been updated

Abstract

The heterogeneity and contribution of collagen and elastin to residual stresses have been thoroughly studied, but more recently, glycosaminoglycans (GAGs) also emerged as potential regulators. In this study, the opening angle of aortic rings (an indicator of circumferential residual stresses) and the mural distributions of sulfated GAGs (sGAG), collagen, and elastin were quantified in the ascending, aortic arch and descending thoracic regions of 5- to 6-month-old pigs. The opening angle correlated positively with the aortic ring’s mean radius and thickness, with good and moderate correlations respectively. The correlations between the sGAG, collagen, elastin, and collagen:sGAG ratio and the opening angle were evaluated to identify aortic compositional factors that could play roles in regulating circumferential residual stresses. The total collagen:sGAG ratio displayed the strongest correlation with the opening angle (r = − 0.715, p < 0.001), followed by the total sGAG content which demonstrated a good correlation (r = 0.623, p < 0.001). Additionally, the intramural gradients of collagen, sGAG and collagen:sGAG correlated moderately with the opening angle. We propose that, in addition to the individual role sGAG play through their content and intramural gradient, the interaction between collagen and sGAG should be considered when evaluating circumferential residual stresses in the aorta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Change history

  • 26 January 2022

    The original article was revised to correct the editorial responsibility line

References

  1. Alastrué, V., E. Peña, M. Á. Martínez, and M. Doblaré. Assessing the use of the “opening angle method” to enforce residual stresses in patient-specific arteries. Ann. Biomed. Eng. 35:1821–1837, 2007.

    PubMed  Google Scholar 

  2. Amabili, M., P. Balasubramanian, I. Bozzo, I. D. Breslavsky, and G. Ferrari. Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas. J. Mech. Behav. Biomed. Mater. 99:27–46, 2019.

    PubMed  Google Scholar 

  3. Azeloglu, E. U., M. B. Albro, V. A. Thimmappa, G. A. Ateshian, and K. D. Costa. Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. Am. J. Physiol. Heart Circ. Physiol. 294:H1197–H1205, 2008.

    CAS  PubMed  Google Scholar 

  4. Beenakker, J.-W.M., B. A. Ashcroft, J. H. N. Lindeman, and T. H. Oosterkamp. Mechanical properties of the extracellular matrix of the aorta studied by enzymatic treatments. Biophys. J. 102:1731–1737, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bellini, C., J. Ferruzzi, S. Roccabianca, E. S. Di Martino, and J. D. Humphrey. A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann. Biomed. Eng. 42:488–502, 2014.

    CAS  PubMed  Google Scholar 

  6. Camplejohn, K. L., and S. A. Allard. Limitations of safranin ‘O’ staining in proteoglycan-depleted cartilage demonstrated with monoclonal antibodies. Histochemistry. 89:185–188, 1988.

    CAS  PubMed  Google Scholar 

  7. Cardamone, L., A. Valentín, J. F. Eberth, and J. D. Humphrey. Origin of axial prestretch and residual stress in arteries. Biomech. Model. Mechanobiol. 8:431, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Davis, E. C. Elastic lamina growth in the developing mouse aorta. J. Histochem. Cytochem. 43:1115–1123, 1995.

    CAS  PubMed  Google Scholar 

  9. Díaz, C., J. A. Peña, M. A. Martínez, and E. Peña. Unraveling the multilayer mechanical response of aorta using layer-specific residual stresses and experimental properties. J. Mech. Behav. Biomed. Mater. 113:104070, 2021.

    PubMed  Google Scholar 

  10. Fonck, E., G. Prod’hom, S. Roy, L. Augsburger, D. A. Rüfenacht, and N. Stergiopulos. Effect of elastin degradation on carotid wall mechanics as assessed by a constituent-based biomechanical model. Am. J. Physiol. Heart Circ. Physiol. 292:H2754–H2763, 2007.

    CAS  PubMed  Google Scholar 

  11. Ghadie, N., J.-P. St-Pierre, and M. R. Labrosse. Intramural glycosaminoglycans distribution vs. residual stress in porcine ascending aorta: a computational study. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2020. https://doi.org/10.1109/EMBC44109.2020.9176381

  12. Ghadie, N., J.-P. St-Pierre, and M. Labrosse. The contribution of glycosaminoglycans/proteoglycans to aortic mechanics in health and disease: a critical review. IEEE Trans. Biomed. Eng. 2021. https://doi.org/10.1109/TBME.2021.3074053.

    Article  PubMed  Google Scholar 

  13. Greenwald, S. E., J. E. Moore Jr., A. Rachev, T. P. C. Kane, and J.-J. Meister. Experimental investigation of the distribution of residual strains in the artery wall. J. Biomech. Eng. 119:438–444, 1997.

    CAS  PubMed  Google Scholar 

  14. Guo, X., Y. Lanir, and G. S. Kassab. Effect of osmolarity on the zero-stress state and mechanical properties of aorta. Am. J. Physiol. Heart Circ. Physiol. 293:H2328–H2334, 2007.

    CAS  PubMed  Google Scholar 

  15. Hazra, A., and N. Gogtay. Biostatistics series module 6: correlation and linear regression. Indian J. Dermatol. 61:593, 2016.

    PubMed  PubMed Central  Google Scholar 

  16. Hillman, H. Limitations of clinical and biological histology. Med. Hypotheses. 54:553–564, 2000.

    CAS  PubMed  Google Scholar 

  17. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. In: Cardiovascular Soft Tissue Mechanics, edited by S. C. Cowin, and J. D. Humphrey. Dordrecht: Kluwer Academic Publishers, 2004, pp. 1–48.

    Google Scholar 

  18. Holzapfel, G. A., and R. W. Ogden. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. J. R. Soc. Interface. 7:787–799, 2010.

    PubMed  Google Scholar 

  19. Holzapfel, G. A., G. Sommer, M. Auer, P. Regitnig, and R. W. Ogden. Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann. Biomed. Eng. 35:530–545, 2007.

    PubMed  Google Scholar 

  20. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2002.

    Google Scholar 

  21. Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12:407–430, 2002.

    Google Scholar 

  22. Jadidi, M., S. A. Razian, M. Habibnezhad, E. Anttila, and A. Kamenskiy. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: comparison of the descending thoracic aorta to the superficial femoral artery. Acta Biomaterialia. 119:268–283, 2021.

    CAS  PubMed  Google Scholar 

  23. Kesava Reddy, G., and C. S. Enwemeka. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 29:225–229, 1996.

    Google Scholar 

  24. Labrosse, M. R., E. R. Gerson, J. P. Veinot, and C. J. Beller. Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress. J. Mech. Behav. Biomed. Mater. 17:44–55, 2013.

    PubMed  Google Scholar 

  25. Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113:245–258, 1991.

    CAS  PubMed  Google Scholar 

  26. Lanir, Y. Mechanisms of residual stress in soft tissues. J. Biomech. Eng. 131:044506, 2009.

    PubMed  Google Scholar 

  27. Lanir, Y. Osmotic swelling and residual stress in cardiovascular tissues. J. Biomech. 45:780–789, 2012.

    PubMed  Google Scholar 

  28. Maes, L., H. Fehervary, J. Vastmans, S. J. Mousavi, S. Avril, and N. Famaey. Constrained mixture modeling affects material parameter identification from planar biaxial tests. J. Mech. Behav. Biomed. Mater. 95:124–135, 2019.

    PubMed  Google Scholar 

  29. Martufi, G., and T. C. Gasser. A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. J. Biomech. 44:2544–2550, 2011.

    PubMed  Google Scholar 

  30. Matsumoto, T., M. Tsuchida, and M. Sato. Change in intramural strain distribution in rat aorta due to smooth muscle contraction and relaxation. Am. J. Physiol. Heart Circ. Physiol. 271:H1711–H1716, 1996.

    CAS  Google Scholar 

  31. Mattson, J. M., R. Turcotte, and Y. Zhang. Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics. Biomech. Model. Mechanobiol. 16:213–225, 2017.

    PubMed  Google Scholar 

  32. Mousavi, S. J., and S. Avril. Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory. Biomech. Model. Mechanobiol. 16:1765–1777, 2017.

    PubMed  Google Scholar 

  33. Panpho, P., B. Geraghty, Y. H. Chim, H. A. Davies, M. L. Field, J. Madine, and R. Akhtar. Macro- and micro-mechanical properties of the ovine aorta: correlation with regional variations in collagen, elastin and glycosaminoglycan levels. ARTRES. 25:27, 2019.

    Google Scholar 

  34. Peña, J. A., M. A. Martínez, and E. Peña. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta. J. Mech. Behav. Biomed. Mater. 50:55–69, 2015.

    PubMed  Google Scholar 

  35. Rachev, A., and T. Shazly. A structure-based constitutive model of arterial tissue considering individual natural configurations of elastin and collagen. J. Mech. Behav. Biomed. Mater. 90:61–72, 2019.

    CAS  PubMed  Google Scholar 

  36. Safi, H. J., C. C. Miller, C. Carr, D. C. Iliopoulos, D. A. Dorsay, and J. C. Baldwin. Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair. J. Vasc. Surg. 27:58–68, 1998.

    CAS  PubMed  Google Scholar 

  37. Saini, A., C. Berry, and S. Greenwald. Effect of age and sex on residual stress in the aorta. JVR. 32:398–405, 1995.

    CAS  Google Scholar 

  38. Sassani, S. G., S. Tsangaris, and D. P. Sokolis. Layer- and region-specific material characterization of ascending thoracic aortic aneurysms by microstructure-based models. J. Biomech. 48:3757–3765, 2015.

    PubMed  Google Scholar 

  39. Scott, J. E. Elasticity in extracellular matrix ‘shape modules’ of tendon, cartilage, etc. A sliding proteoglycan-filament model. J. Physiol. 553:335–343, 2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sigaeva, T., G. Sommer, G. A. Holzapfel, and E. S. Di Martino. Anisotropic residual stresses in arteries. J. R. Soc. Interface. 16:20190029, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sokolis, D. P. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta. J. Biomech. 96:109335, 2019.

    PubMed  Google Scholar 

  42. Sommer, G., P. Regitnig, L. Költringer, and G. A. Holzapfel. Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supraphysiological loadings. Am. J. Physiol. Heart Circ. Physiol. 298:H898–H912, 2010.

    CAS  PubMed  Google Scholar 

  43. Volokh, K. Y. Compressibility of arterial wall in ring-cutting experiments. 8, 2006.

  44. Wagenseil, J. E., and R. P. Mecham. Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89:957–989, 2009.

    CAS  PubMed  Google Scholar 

  45. Zeinali-Davarani, S., M.-J. Chow, R. Turcotte, and Y. Zhang. Characterization of biaxial mechanical behavior of porcine aorta under gradual elastin degradation. Ann. Biomed. Eng. 41:1528–1538, 2013.

    PubMed  PubMed Central  Google Scholar 

  46. Zeller, P. J., and T. C. Skalak. contribution of individual structural components in determining the zero-stress state in small arteries. J. Vasc. Res. 35:8–17, 1998.

    CAS  PubMed  Google Scholar 

  47. Zheng, C., and M. E. Levenston. Fact versus artifact: avoiding erroneous estimates of sulfated glycosaminoglycan content using the dimethylmethylene blue colorimetric assay for tissue-engineered constructs. Eur. Cell Mater. 29:224–236, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Xudong Cao for the use of some of his equipment. This work was supported by the Natural Sciences and Engineering Research Council of Canada (JPS: RGPIN-2017-04593, 2017-2022; MRL: RGPIN-2017-04588, 2017-2022). Instruments used in the study were acquired with funds from the Canadian Foundation for Innovation (JPS: CFI-37732; 2020-2022) with matching funds from the Ministry of Economic Development, Job Creation and Trade Ontario Research Fund.

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel R. Labrosse.

Additional information

Associate Editor Elisabetta Zanetti oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadie, N.M., St-Pierre, JP. & Labrosse, M.R. Intramural Distributions of GAGs and Collagen vs. Opening Angle of the Intact Porcine Aortic Wall. Ann Biomed Eng 50, 157–168 (2022). https://doi.org/10.1007/s10439-022-02901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02901-8

Keywords

Navigation