Skip to main content
Log in

In Silico Hemodynamics and Filtering Evaluation of a Commercial Embolic Protection Device

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

During the last years, several kinds of Embolic Protection Devices (EPD) have been developed, with the aim of minimizing complication caused by thrombi generated during Carotid Artery Stenting (CAS). These devices are capable of capturing small particles generated during the intervention, avoiding cerebral stroke and improving the outcomes of the surgery. However, they have associated complications, like the increase on flow resistance associated by their use or the lack of knowledge on their actual filtration efficiency for thrombi of low size. Current work proposes a validated computational methodology in order to predict the hemodynamic features and filtering efficiency of a commercial EPD. It will be observed how Computational Fluid Dynamics predicts pressure drop with fair agreement with the experimental measurements. Finally, this work analyzes the filtration efficiency and the influence of the distribution of injected particles on this parameter. The capabilities of the filter for retaining particles of diameter below the pore size is, additionally, discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anderson Jr, J. D. Fundamental of Aerodynamics. McGraw-Hill Education, 2010.

  2. Coggia, M., O. Goëau-Brissonnière, J. L. Duval, J. P. Leschi, M. Letort, and M. D. Nagel. Embolic risk of the different stages of carotid bifurcation balloon angioplasty: an experimental study. J. Vasc. Surg. 31:550–557, 2000.

    Article  CAS  Google Scholar 

  3. Cundall, P. A., and O. D. L. Strack. A discrete numerical model for granular assemblies. Géotechnique. 29:47–65, 1979.

    Article  Google Scholar 

  4. Deyranlou, A., J. H. Naish, C. A. Miller, A. Revell, and A. Keshmiri. Numerical study of atrial fibrillation effects on flow distribution in aortic circulation. Ann. Biomed. Eng. 48:1–18, 2020.

    Article  Google Scholar 

  5. Finol, E. A., C. M. Scotti, I. Verdinelli, C. H. Amon, and M. H. Wholey. Performance assessment of embolic protection filters for carotid artery stenting. Model. Med. Biol. VI. 1:133–142, 2005.

    Google Scholar 

  6. Finol, E. A., G. M. Siewiorek, C. M. Scotti, M. H. M. H. Wholey, and M. H. M. H. Wholey. Wall apposition assessment and performance comparison of distal protection filters. J. Endovasc. Ther. 15:177–185, 2008.

    Article  Google Scholar 

  7. Graf, C., and J. P. Barras. Rheological properties of human blood plasma—a comparison of measurements with three different viscometers. Experientia. 35:224–225, 1979.

    Article  CAS  Google Scholar 

  8. Haidekker, M. A., A. G. Tsai, T. Brady, H. Y. Stevens, J. A. Frangos, E. Theodorakis, and M. Intaglietta. A novel approach to blood plasma viscosity measurement using fluorescent molecular rotors. Am. J. Physiol. Heart Circ. Physiol. 282:H1609–H1614, 2002.

    Article  CAS  Google Scholar 

  9. Hart, J. P., P. Peeters, J. Verbist, K. Deloose, and M. Bosiers. Do device characteristics impact outcome in carotid artery stenting? J. Vasc. Surg. 44:725–730, 2006.

    Article  Google Scholar 

  10. Heistad, D. D., M. L. Marcus, and S. Mueller. Measurement of cerebral blood flow with microspheres. Arch. Neurol. 34:657–659, 1977.

    Article  CAS  Google Scholar 

  11. Hendriks, J. M., J. D. Zindler, A. Van Der Lugt, P. M. T. Pattynama, M. R. H. M. Van Sambeek, J. L. Bosch, and L. C. Van Dijk. Embolic protection filters for carotid stenting: differences in flow obstruction depending on filter construction. J. Endovasc. Ther. 13:47–50, 2006.

    Article  Google Scholar 

  12. Howell, M., Z. Krajcer, K. Dougherty, N. Strickman, M. Skolkin, B. Toombs, and D. Paniagua. Correlation of periprocedural systolic blood pressure changes with neurological events in high-risk carotid stent patients. J. Endovasc. Ther. 9:810–816, 2002.

    PubMed  Google Scholar 

  13. Johnson, S., S. Duffy, G. Gunning, M. Gilvarry, J. P. McGarry, and P. E. McHugh. Review of mechanical testing and modelling of thrombus material for vascular implant and device design. Ann. Biomed. Eng. 45:2494–2508, 2017.

    Article  CAS  Google Scholar 

  14. Karimi, S., M. Dabagh, P. Vasava, M. Dadvar, B. Dabir, and P. Jalali. Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J. Non-Newton. Fluid Mech. 207:42–52, 2014.

    Article  CAS  Google Scholar 

  15. Kurzhals, A., J. B. Matthies, R. Andresen, C. Wissgott, K. P. Schmitz, N. Grabow, and W. Schmidt. Efficiency test of current carotid embolic protection devices. Biomed. Tech. 62:349–355, 2017.

    Article  CAS  Google Scholar 

  16. Kwon, B. J., M. H. Han, H. S. Kang, and C. Jung. Protection filter-related events in extracranial carotid artery stenting: a single-center experience. J. Endovasc. Ther. 13:711–722, 2006.

    Article  Google Scholar 

  17. Kwon, O. K., S. H. Kim, E. A. Jacobsen, and M. P. Marks. Clinical implications of internal carotid artery flow impairment caused by filter occlusion during carotid artery stenting. Am. J. Neuroradiol. 33:494–499, 2012.

    Article  Google Scholar 

  18. Lee, S. H., S. Kang, N. Hur, and S.-K. Jeong. A fluid-structure interaction analysis on hemodynamics in carotid artery based on patient-specific clinical data. J. Mech. Sci. Technol. 26:3821–3831, 2012.

    Article  Google Scholar 

  19. Louvelle, L., M. Doyle, G. Van Arsdell, C. Amon, G. Van Arsdell, and C. Amon. The effect of geometric and hemodynamic parameters on blood flow efficiency in repaired tetralogy of fallot patients. Ann. Biomed. Eng. 2021. https://doi.org/10.1007/s10439-021-02771-6.

    Article  PubMed  Google Scholar 

  20. Markus, H. S., A. King, M. Shipley, R. Topakian, M. Cullinane, S. Reihill, N. M. Bornstein, and A. Schaafsma. Asymptomatic embolisation for prediction of stroke in the Asymptomatic Carotid Emboli Study (ACES): a prospective observational study. Lancet Neurol. 9:663–671, 2010.

    Article  Google Scholar 

  21. Menter, F. R. Zonal two equation κ-ω turbulence models for aerodynamic flows. AIAA 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, 1993, 1993.

  22. Montorsi, P., L. Caputi, S. Galli, E. Ciceri, G. Ballerini, M. Agrifoglio, P. Ravagnani, D. Trabattoni, G. Pontone, F. Fabbiocchi, A. Loaldi, E. Parati, D. Andreini, F. Veglia, and A. L. Bartorelli. Microembolization during carotid artery stenting in patients with high-risk, lipid-rich plaque: a randomized trial of proximal versus distal cerebral protection. J. Am. Coll. Cardiol. 58:1656–1663, 2011.

    Article  Google Scholar 

  23. Morris, D. R., K. Ayabe, T. Inoue, N. Sakai, R. Bulbulia, A. Halliday, and S. Goto. Evidence-based carotid interventions for stroke prevention: state-of-the-art review. J Atheroscler Thromb 24:0–000, 2017.

  24. Mousa, A. Y., J. E. Campbell, A. F. Aburahma, and M. C. Bates. Current update of cerebral embolic protection devices. J. Vasc. Surg. 56:1429–1437, 2012.

    Article  Google Scholar 

  25. Mukherjee, D., N. D. Jani, J. Narvid, and S. C. Shadden. The role of circle of willis anatomy variations in cardio-embolic stroke: a patient-specific simulation based study. Ann. Biomed. Eng. 46:1128–1145, 2018.

    Article  Google Scholar 

  26. Nevárez, M. I. S., E. P. Andani, and M. M. Hernández. Hemodynamic impact analysis of mesh-type embolic protection devices in an in vitro model. Angiologia. 72:178–185, 2020.

    Google Scholar 

  27. Papamanolis, L., H. J. Kim, C. Jaquet, M. Sinclair, M. Schaap, I. Danad, P. van Diemen, P. Knaapen, L. Najman, H. Talbot, C. A. Taylor, and I. Vignon-Clementel. Myocardial perfusion simulation for coronary artery disease: a coupled patient-specific multiscale model. Ann. Biomed. Eng. 49:1432–1447, 2021.

    Article  Google Scholar 

  28. Pope, S. B. Turbulent Flows. Cambridge: Cambridge University Press, 2012.

    Google Scholar 

  29. Di Renzo, A., and F. P. Di Maio. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59:525–541, 2004.

    Article  Google Scholar 

  30. Ryan, N. W., and M. M. Johnson. Transistion from laminar to turbulent flow in pipes. AIChE J. 5:433–435, 1959.

    Article  CAS  Google Scholar 

  31. Shadden, S. C., and A. Arzani. Lagrangian postprocessing of computational hemodynamics. Ann. Biomed. Eng. 43:41–58, 2014.

    Article  Google Scholar 

  32. Siewiorek, G. M., M. K. Eskandari, and E. A. Finol. The AngioguardTM embolic protection device. Expert Rev. Med. Devices. 5:287–296, 2008.

    Article  Google Scholar 

  33. Siewiorek, G. M., and E. A. Finol. Computational modeling of distal protection filters. J. Endovasc. Ther. 17:777–788, 2010. https://doi.org/10.1583/10-3178.1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Siewiorek, G. M., and E. A. Finol. Experimental and Computational Evaluation of Embolic Protection. ASME 2010 Summer Bioengineering Conference, SBC 2010 627–628, 2013. https://doi.org/10.1115/SBC2010-19693

  35. Siewiorek, G. M., R. T. Krafty, M. H. Wholey, and E. A. Finol. The association of clinical variables and filter design with carotid artery stenting thirty-day outcome. Eur. J. Vasc. Endovasc. Surg. 42:282–291, 2011.

    Article  CAS  Google Scholar 

  36. Siewiorek, G. M., M. H. Wholey, and E. A. Finol. Vascular resistance in the carotid artery: an in vitro investigation of embolic protection filters. J. Vasc. Interv. Radiol. 19:1467–1476, 2008.

    Article  Google Scholar 

  37. Siewiorek, G. M., M. H. Wholey, and E. A. Finol. In vitro performance assessment of distal protection filters: Pulsatile flow conditions. Journal of Endovascular Therapy. 16:735–743, 2009.

    Article  Google Scholar 

  38. Spiegel, M., T. Redel, J. J. Zhang, T. Struffert, J. Hornegger, R. G. Grossman, A. Doerfler, and C. Karmonik. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comput. Methods Biomech. Biomed. Eng. 14:9–22, 2011.

    Article  Google Scholar 

  39. The American Society of Mechanical Engineers. V&V 40-2018 Assessing Credibility of Computational Modeling Through Verification and Validation: Application to Medical Devices. 2018.

  40. Traenka, C., S. T. Engelter, M. M. Brown, J. Dobson, C. Frost, and L. H. Bonati. Silent brain infarcts on diffusion-weighted imaging after carotid revascularisation: a surrogate outcome measure for procedural stroke? A systematic review and meta-analysis. Eur. Stroke J. 4:127–143, 2019.

    Article  Google Scholar 

  41. Wilcox, D. C. Multiscale model for turbulent flows. AIAA J. 26:1311–1320, 1988.

    Article  Google Scholar 

  42. Zhou, W., B. D. Baughman, S. Soman, M. Wintermark, L. C. Lazzeroni, E. Hitchner, J. Bhat, and A. Rosen. Volume of subclinical embolic infarct correlates to long-term cognitive changes after carotid revascularization. J. Vasc. Surg. 65:686–694, 2017.

    Article  Google Scholar 

Download references

Funding

This study ws funded by upv-la fe 2020 subprograma proyectos de innovación (Grant No. DPECFD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Quintero.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, A., Quintero, P., Mares, A. et al. In Silico Hemodynamics and Filtering Evaluation of a Commercial Embolic Protection Device. Ann Biomed Eng 49, 2659–2670 (2021). https://doi.org/10.1007/s10439-021-02846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02846-4

Keywords

Navigation