Skip to main content
Log in

Characterizing and Tuning Perfusion Parameters Within an Innovative, Versatile Oxygenating Perfusion System

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The advantages of oxygenated perfusion are continuing to be demonstrated by many groups focused on improving the efficacy of tissue preservation for transplant, bioreactors for studies of basic tissue physiology, and closed-loop resuscitation. This work presents a novel and portable device that supplies oxygenated and pulsatile perfusion, both of which are regulated by a single pump-oxygenator component comprised of silicone tubes that are cyclically inflated/deflated with compressed oxygen. In this study, pump variables (oxygen supply pressure and length of a silicone tube) were evaluated against hydraulic elements that mimicked the vascular resistance of kidneys, livers, and hearts. The perfusion pressures, flow rates, and oxygenation rates produced by the device were characterized for all configurations of pump variables, and the pulse rates were tuned to improve performance. The device supplied perfusion pressures ranging from 3.5 to 109 mmHg, flow rates ranging from 1.4 to 71.8 mL min−1, and oxygenation rates up to 316.6 µmol min−1. From those results, it was determined that the device was capable of achieving perfusion parameters used in previous kidney, liver, and heart preservation studies. Ultimately, this research demonstrated the efficacy of a novel device that is designed to supply oxygenated perfusion across a range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

SCS:

Static cold storage

MP:

Machine perfusion

HMP:

Hypothermic machine perfusion

NMP:

Normothermic machine perfusion

VOPS:

Versatile oxygenating perfusion system

PVC:

Polyvinyl chloride

L :

Length of tube (m)

R :

Vascular resistance (mmHg min mL−1)

r :

Inner radius of tube (m)

µ :

Greek, small letter Mu, viscosity (Pa s)

x(t):

Flow rate profile (mL min−1)

MFR :

Vector of estimated mean flow rates (mL min−1)

t :

Time (s)

t max :

Maximum evaluation time (s)

t c :

Closed time for three-way solenoid valve (s)

t o :

Open time for three-way solenoid valve (s)

PFopt :

Optimal pulse frequency (Hz)

DCopt :

Optimal duty cycle (%)

\({\dot{\text{O}}}_{2}\) :

Oxygenation rate (μmol min−1)

H c :

Van ’t Hoff relationship (mol m−3 Pa−1)

V sol :

Volume of perfusion solution in device (m3)

ΔP dev :

Change in device pressure (Pa)

t trial :

Time of trial (min)

K :

Henry’s law solubility constant for oxygen (mol m−3 Pa−1)

H :

Temperature dependence of the Henry solubility constant (K)

T amb :

Ambient temperature (K)

T o :

Reference temperature (K)

References

  1. Akhter, F., G. N. W. Bascos, M. Canelas, B. Griffin, and R. L. Hood. Mechanical characterization of a fiberoptic microneedle device for controlled delivery of fluids and photothermal excitation. J. Mech. Behav. Biomed. Mater. 2020. https://doi.org/10.1016/j.jmbbm.2020.104042.

    Article  PubMed  Google Scholar 

  2. Bruinsma, B. G., H. Yeh, S. Özer, P. N. Martins, A. Farmer, W. Wu, N. Saeidi, S. Op den Dries, T. A. Berendsen, and R. N. Smith. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am. J. Transplant. 14:1400–1409, 2014.

    Article  CAS  Google Scholar 

  3. Bunegin, L., and J. F. Gelineau. The application of fluidics technology for organ preservation. Biomed. Instrum. Technol. 38:155–164, 2004.

    PubMed  Google Scholar 

  4. Chen, A., R. Yin, L. Cao, C. Yuan, H. Ding, and W. Zhang. Soft robotics: definition and research issues. 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). 2017, pp. 366–370.

  5. Cobert, M. L., M. E. Merritt, L. M. West, C. Ayers, M. E. Jessen, and M. Peltz. Metabolic characteristics of human hearts preserved for 12 hours by static storage, antegrade perfusion, or retrograde coronary sinus perfusion. J. Thorac. Cardiovasc. Surg. 148:2310–2315, 2014.

    Article  CAS  Google Scholar 

  6. Cobert, M., M. Peltz, L. West, and M. E. Jessen. Importance of organ preservation solution composition in reducing myocardial edema during machine perfusion for heart transplantation. Transplant. Proc. 42:1591–1594, 2010.

    Article  CAS  Google Scholar 

  7. Collins, M. J., S. L. Moainie, B. P. Griffith, and R. S. Poston. Preserving and evaluating hearts with ex vivo machine perfusion: an avenue to improve early graft performance and expand the donor pool. Eur. J. Cardio-Thoracic Surg. 34:318–325, 2008.

    Article  Google Scholar 

  8. Desai, C. S., and D. A. Gerber. Concise review of machine perfusion in liver transplantation. World J. Hepatol. 12:6–9, 2020.

    Article  Google Scholar 

  9. Finger, E. B. Organ Preservation. Medscape. New York, NY: WebMD, LLC, 2013.

  10. Fujita, S., I. Hamamoto, K. Nakamura, K. Tanaka, and K. Ozawa. Evaluation of oxygen necessity during hypothermic liver perfusion. Arch. JPN Chir. 62:228–240, 1993.

    CAS  Google Scholar 

  11. Guarrera, J., S. Henry, B. Samstein, R. Odeh-Ramadan, M. Kinkhabwala, M. Goldstein, L. Ratner, J. Renz, H. Lee, and J. Brown. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am. J. Transplant. 10:372–381, 2010.

    Article  CAS  Google Scholar 

  12. Guarrera, J., S. Henry, B. Samstein, E. Reznik, C. Musat, T. Lukose, L. Ratner, R. Brown Jr., T. Kato, and J. Emond. Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. Am. J Transplant. 15:161–169, 2015.

    Article  CAS  Google Scholar 

  13. Huang, V., N. Karimian, D. Detelich, S. Raigani, S. Geerts, I. Beijert, F. M. Fontan, M. M. Aburawi, S. Ozer, and P. Banik. Split-liver ex situ machine perfusion: a novel technique for studying organ preservation and therapeutic interventions. Journal of Clinical Medicine. 9:269, 2020.

    Article  CAS  Google Scholar 

  14. Jing, L., L. Yao, M. Zhao, L. Peng, and M. Liu. Organ preservation: from the past to the future. Acta Pharmacol Sin. 39:845–857, 2018.

    Article  CAS  Google Scholar 

  15. Jochmans, I., H. Hofker, L. Davies, D. Monbaliu, T. Darius, D. Mikhalski, L. Pipeleers, L. Weekers, D. Ysebaert, and C. Randon. Oxygenated hypothermic machine perfusion of kidneys donated after circulatory death: an international randomised controlled trial. Proc. 26th BTS Annual Congress 2019, 2019.

  16. Jochmans, I., C. Moers, J. M. Smits, H. G. Leuvenink, J. Treckmann, A. Paul, A. Rahmel, J. Squifflet, E. van Heurn, and D. Monbaliu. Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death: a multicenter, randomized, controlled trial. Ann Surg. 252:756–764, 2010.

    Article  Google Scholar 

  17. Kaminski, J., P. Delpech, S. Kaaki-Hosni, X. Promeyrat, T. Hauet, and P. Hannaert. Oxygen consumption by warm ischemia-injured porcine kidneys in hypothermic static and machine preservation. J. Surg. Res. 242:78–86, 2019.

    Article  CAS  Google Scholar 

  18. Light, J. A., F. Gage, A. E. Kowalski, T. M. Sasaki, and C. Callender. Immediate function and cost comparison between static and pulsatile preservation in kidney recipients. Clin. Transplant. 10:233–236, 1996.

    CAS  PubMed  Google Scholar 

  19. Lüer, B., M. Koetting, P. Efferz, and T. Minor. Role of oxygen during hypothermic machine perfusion preservation of the liver. Transplant. Int. 23:944–950, 2010.

    Google Scholar 

  20. Nilsson, J., V. Jernryd, G. Qin, A. Paskevicius, C. Metzsch, T. Sjöberg, and S. Steen. A nonrandomized open-label phase 2 trial of nonischemic heart preservation for human heart transplantation. Nat. Commun. 11:1–8, 2020.

    Article  Google Scholar 

  21. Obradović, D., N. Aleksić, and L. Mijatov-Ukropina. Standardization of liver dimensions for the local population. Med. Pregl. 44:266–268, 1991.

    PubMed  Google Scholar 

  22. Patel, S., O. Pankewycz, N. Nader, M. Zachariah, R. Kohli, and M. Laftavi. Prognostic utility of hypothermic machine perfusion in deceased donor renal transplantation. Transplant. Proc. 44:2207–2212, 2012.

    Article  CAS  Google Scholar 

  23. Portillo, D. J., E. N. A. Hoffman, M. Garcia, E. LaLonde, E. Hernandez, C. S. Combs, and R. L. Hood. Modal analysis of a sweeping jet emitted by a fluidic oscillator. Virtual AIAA AVIATION 2021 FORUM. 2835, 2021.

  24. Post, I. C., M. C. Dirkes, M. Heger, R. Bezemer, J. Van’t Leven, and T. M. van Gulik. Optimal flow and pressure management in machine perfusion systems for organ preservation. Ann. Biomed. Eng. 40:2698–2707, 2012.

    Article  Google Scholar 

  25. Salinas, J., K. K. Chung, E. A. Mann, L. C. Cancio, G. C. Kramer, M. L. Serio-Melvin, E. M. Renz, C. E. Wade, and S. E. Wolf. Computerized decision support system improves fluid resuscitation following severe burns: an original study. Crit. Care Med. 39:2031–2038, 2011.

    Article  Google Scholar 

  26. Schroder, J., D. D’Alessandro, F. Esmailian, T. Boeve, P. Tang, K. Liao, I. Wang, A. Anyanwu, A. Shah, and K. Mudy. Successful utilization of extended criteria donor (ECD) hearts for transplantation-results of the OCS™ Heart EXPAND trial to evaluate the effectiveness and safety of the OCS Heart system to preserve and assess ECD hearts for transplantation. J. Heart Lung Transplant. 38:S42, 2019.

    Article  Google Scholar 

  27. Standring, S., N. Anand, R. Birch, P. Collins, A. R. Crossman, M. Gleeson, G. Jawaheer, A. Smith, J. D. Spratt, M. D. Stringer, R. S. Tubbs, R. Tunstall, A. J. Wein, and C. B. Wigley; Gray’s Anatomy: The Anatomical Basis of Clinical Practice. Philadelphia: Elsevier, 1562, 2016.

  28. Stratta, R. J., P. S. Moore, A. C. Farney, J. Rogers, E. L. Hartmann, A. Reeves-Daniel, M. D. Gautreaux, S. S. Iskandar, and P. L. Adams. Influence of pulsatile perfusion preservation on outcomes in kidney transplantation from expanded criteria donors. J. Am. Coll. Surg. 204:873–882, 2007.

    Article  Google Scholar 

  29. Tingle, S. J., R. S. Figueiredo, J. A. Moir, M. Goodfellow, D. Talbot, and C. H. Wilson. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst. Rev. 2019. https://doi.org/10.1002/14651858.CD011671.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  30. U.S. Department of Health and Human Services. Organ Procurement and Transplantation Network, National Data, 2020.

  31. Urbanellis, P., M. Hamar, J. M. Kaths, D. Kollmann, I. Linares, L. Mazilescu, S. Ganesh, A. Wiebe, P. M. Yip, and R. John. Normothermic ex vivo kidney perfusion improves early DCD graft gunction compared with hypothermic machine perfusion and static cold storage. Transplantation. 104:947–955, 2020.

    Article  CAS  Google Scholar 

  32. Wolf, D. Evaluation of the size, shape, and consistency of the liver. In: Clinical Methods: The History of Physical and Laboratory Examinations, edited by H. KennethWalker, W. DallasHall, and J. WillisHurst. Boston: Butterworths, 1990, pp. 478–481.

    Google Scholar 

  33. Xu, J., J. E. Buchwald, and P. N. Martins. Review of current machine perfusion therapeutics for organ preservation. Transplantation. 104:1792–1803, 2020.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Ender Finol and Dr. Christopher Combs for providing data collection equipment and David Kuenstler for assisting with the fabrication of the device.

Conflict of interest

This work was funded through a Department of Defense PRMRP; Award Number: W81XWH-18-1-0640. In addition, this team has filed for a provisional patent that includes the design and operation of the device described in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lyle Hood.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portillo, D.J., Bayliss, L., Rivas, S. et al. Characterizing and Tuning Perfusion Parameters Within an Innovative, Versatile Oxygenating Perfusion System. Ann Biomed Eng 49, 3154–3164 (2021). https://doi.org/10.1007/s10439-021-02843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02843-7

Keywords

Navigation