Skip to main content

Advertisement

Log in

Low-Profile Electromagnetic Field Sensors in the Measurement and Modelling of Three-Dimensional Jaw Kinematics and Occlusal Loading

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Dynamic occlusal loading during mastication is clinically relevant in the design and functional assessment of dental restorations and removable dentures, and in evaluating temporomandibular joint dysfunction. The aim of this study was to develop a modelling framework to evaluate subject-specific dynamic occlusal loading during chewing and biting over the entire dental arch. Measurements of jaw motion were performed on one healthy male adult using low-profile electromagnetic field sensors attached to the teeth, and occlusal anatomy quantified using an intra-oral scanner. During testing, the subject chewed and maximally compressed a piece of rubber between both second molars, first molars, premolars and their central incisors. The occlusal anatomy, rubber geometry and experimentally measured rubber material properties were combined in a finite element model. The measured mandibular motion was used to kinematically drive model simulations of chewing and biting of the rubber sample. Three-dimensional dynamic bite forces and contact pressures across the occlusal surfaces were then calculated. Both chewing and biting on the first molars produced the highest bite forces across the dental arch, and a large amount of anterior shear force was produced at the incisors and the second molars. During chewing, the initial tooth-rubber contact evolved from the buccal sides of the molars to the lingual sides at full mouth closure. Low-profile electromagnetic field sensors were shown to provide a clinically relevant measure of jaw kinematics with sufficient accuracy to drive finite element models of occlusal loading during chewing and biting. The modelling framework presented provides a basis for calculation of physiological, dynamic occlusal loading across the dental arch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ackland, D. C., A. Moskaljuk, C. Hart, P. Vee Sin Lee, and G. Dimitroulis. Prosthesis loading after temporomandibular joint replacement surgery: a musculoskeletal modeling study. J. Biomech. Eng. 137:041001, 2015.

    PubMed  Google Scholar 

  2. Al-Omiri, M. K., M. G. Sghaireen, M. M. Alhijawi, I. A. Alzoubi, C. D. Lynch, and E. Lynch. Maximum bite force following unilateral implant-supported prosthetic treatment: within-subject comparison to opposite dentate side. J. Oral Rehabil. 41:624–629, 2014.

    CAS  PubMed  Google Scholar 

  3. Bakke, M. Bite force and occlusion. Semin. Orthod. 12:120–126, 2006.

    Google Scholar 

  4. Barbier, L., J. Vander Sloten, G. Krzesinski, E. Schepers, and G. Van Der Perre. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J. Oral Rehabil. 25:847–858, 1998.

    CAS  PubMed  Google Scholar 

  5. Bonjardim, L. R., M. B. D. Gaviao, L. J. Pereira, and P. M. Castelo. Bite force determination in adolescents with and without temporomandibular dysfunction. J. Oral Rehabil. 32:577–583, 2005.

    CAS  PubMed  Google Scholar 

  6. Buschang, P. H., H. Hayasaki, and G. S. Throckmorton. Quantification of human chewing-cycle kinematics. Arch. Oral Biol. 45:461–474, 2000.

    CAS  PubMed  Google Scholar 

  7. Chen, C.-C., Y.-J. Chen, S.-C. Chen, H.-S. Lin, and T.-W. Lu. Evaluation of soft-tissue artifacts when using anatomical and technical markers to measure mandibular motion. J. Dent. Sci. 6:95–101, 2011.

    Google Scholar 

  8. Chen, C.-C., C.-C. Lin, T.-W. Lu, H. Chiang, and Y.-J. Chen. Feasibility of differential quantification of 3D temporomandibular kinematics during various oral activities using a cone-beam computed tomography-based 3D fluoroscopic method. J. Dent. Sci. 8:151–159, 2013.

    Google Scholar 

  9. Drummond, J. L. Degradation, fatigue, and failure of resin dental composite materials. J. Dent. Res. 87:710–719, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferrario, V. F., C. Sforza, G. Serrao, C. Dellavia, and G. M. Tartaglia. Single tooth bite forces in healthy young adults. J. Oral Rehabil. 31:18–22, 2004.

    CAS  PubMed  Google Scholar 

  11. Ferrario, V. F., C. Sforza, G. Zanotti, and G. M. Tartaglia. Maximal bite forces in healthy young adults as predicted by surface electromyography. J. Dent. 32:451–457, 2004.

    PubMed  Google Scholar 

  12. Flanagan, D., H. Ilies, B. O’Brien, A. McManus, and B. Larrow. Jaw bite force measurement device. J. Oral Implantol. 38:361–364, 2012.

    PubMed  Google Scholar 

  13. Gosen, A. J. Mandibular leverage and occlusion. J. Prosthet. Dent. 31:369–376, 1974.

    CAS  PubMed  Google Scholar 

  14. Hasan, I., C. Madarlis, L. Keilig, C. Dirk, A. Weber, C. Bourauel, and F. Heinemann. Changes in biting forces with implant-supported overdenture in the lower jaw: a comparison between conventional and mini implants in a pilot study. Ann. Anat. 208:116–122, 2016.

    CAS  PubMed  Google Scholar 

  15. Hattori, Y., C. Satoh, T. Kunieda, R. Endoh, H. Hisamatsu, and M. Watanabe. Bite forces and their resultants during forceful intercuspal clenching in humans. J. Biomech. 42:1533–1538, 2009.

    PubMed  Google Scholar 

  16. Hattori, Y., C. Satoh, S. Seki, Y. Watanabe, Y. Ogino, and M. Watanabe. Occlusal and TMJ loads in subjects with experimentally shortened dental arches. J. Dent. Res. 82:532–536, 2003.

    CAS  PubMed  Google Scholar 

  17. Hellsing, G. On the regulation of interincisor bite force in man. J. Oral Rehabil. 7:403–411, 1980.

    CAS  PubMed  Google Scholar 

  18. Hujoel, P. P. A meta-analysis of normal ranges for root surface areas of the permanent dentition. J. Clin. Periodontol. 21:225–229, 1994.

    CAS  PubMed  Google Scholar 

  19. Kawaguchi, T., T. Kawata, T. Kuriyagawa, and K. Sasaki. In vivo 3-dimensional measurement of the force exerted on a tooth during clenching. J. Biomech. 40:244–251, 2007.

    CAS  PubMed  Google Scholar 

  20. Keeling, S. D., C. H. Gibbs, S. M. Lupkiewicz, G. J. King, and A. P. Jacobson. Analysis of repeated-measure multicycle unilateral mastication in children. Am. J. Orthod. Dentofac. Orthop. 99:402–408, 1991.

    CAS  Google Scholar 

  21. Koc, D., A. Dogan, and B. Bek. Bite force and influential factors on bite force measurements: a literature review. Eur. J. Dent. 4:223–232, 2010.

    PubMed  PubMed Central  Google Scholar 

  22. Kogawa, E. M., P. S. Calderon, J. R. P. Lauris, C. R. P. Araujo, and P. C. R. Conti. Evaluation of maximal bite force in temporomandibular disorders patients. J. Oral Rehabil. 33:559–565, 2006.

    CAS  PubMed  Google Scholar 

  23. Kshirsagar, R., N. Jaggi, and R. Halli. Bite force measurement in mandibular parasymphyseal fractures: a preliminary clinical study. Craniomaxillofac. Trauma Reconstr. 4:241–244, 2011.

    PubMed  PubMed Central  Google Scholar 

  24. Kumagai, H., T. Suzuki, T. Hamada, P. Sondang, M. Fujitani, and H. Nikawa. Occlusal force distribution on the dental arch during various levels of clenching. J. Oral Rehabil. 26:932–935, 1999.

    CAS  PubMed  Google Scholar 

  25. Lassauzay, C., M.-A. Peyron, E. Albuisson, E. Dransfield, and A. Woda. Variability of the masticatory process during chewing of elastic model foods. Eur. J. Oral Sci. 108:484–492, 2000.

    CAS  PubMed  Google Scholar 

  26. Lepley, C. R., G. S. Throckmorton, R. F. Ceen, and P. H. Buschang. Relative contributions of occlusion, maximum bite force, and chewing cycle kinematics to masticatory performance. Am. J. Orthod. Dentofac. Orthop. 139:606–613, 2011.

    Google Scholar 

  27. Mackerle, J. Finite element modelling and simulations in dentistry: a bibliography 1990–2003. Comput. Methods Biomech. Biomed. Engin. 7:277–303, 2004.

    PubMed  Google Scholar 

  28. Mericske-stern, R. Three-dimensional force measurements with mandibular overdentures connected to implants by ball-shaped retentive anchors. A clinical study. Int. J. Oral Maxillofac. Implant. 13:36–43, 1998.

    CAS  Google Scholar 

  29. Owens, S., P. H. Buschang, G. S. Throckmorton, L. Palmer, and J. English. Masticatory performance and areas of occlusal contact and near contact in subjects with normal occlusion and malocclusion. Am. J. Orthod. Dentofac. Orthop. 121:602–609, 2002.

    Google Scholar 

  30. Proffit, W. R., H. W. Fields, and W. L. Nixon. Occlusal forces in normal- and long-face adults. J. Dent. Res. 62:566–570, 1983.

    CAS  PubMed  Google Scholar 

  31. Raadsheer, M. C., T. M. G. J. van Eijden, F. C. van Ginkell, and B. Prahl-Andersen. Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude. J. Dent. Res. 78:31–42, 1999.

    CAS  PubMed  Google Scholar 

  32. Rismanchian, M., F. Bajoghli, Z. Mostajeran, A. Fazel, and P. Eshkevari. Effect of implants on maximum bite force in edentulous patients. J. Oral Implantol. 35:196–200, 2009.

    PubMed  Google Scholar 

  33. Robinson, D., L. Aguilar, A. Gatti, J. Abduo, P. V. Lee, and D. Ackland. Load response of the natural tooth and dental implant: a comparative biomechanics study. J. Adv. Prosthodont. 11:169–178, 2019.

    PubMed  PubMed Central  Google Scholar 

  34. Röhrle, O., H. Saini, and D. C. Ackland. Occlusal loading during biting from an experimental and simulation point of view. Dent. Mater. 34:58–68, 2018.

    PubMed  Google Scholar 

  35. Röhrle, O., H. Saini, P. V. S. Lee, and D. C. Ackland. A novel computational method to determine subject-specific bite force and occlusal loading during mastication. Comput. Methods Biomech. Biomed. Engin. 21:453–460, 2018.

    PubMed  Google Scholar 

  36. Romeed, S. A., R. Malik, and S. M. Dunne. Stress analysis of occlusal forces in canine teeth and their role in the development of non-carious cervical lesions: abfraction. Int. J. Dent. 153–159:2012, 2012. https://doi.org/10.1155/2012/234845.

    Article  Google Scholar 

  37. Rues, S., H. J. Schindler, J. C. Türp, K. Schweizerhof, and J. Lenz. Motor behavior of the jaw muscles during different clenching levels. Eur. J. Oral Sci. 116:223–228, 2008.

    PubMed  Google Scholar 

  38. Sadat-Khonsari, R., C. Fenske, B. Kahl-Nieke, I. Kirsch, and H. D. Jüde. The helical axis of the mandible during the opening and closing movement of the mouth. J. Orofac. Orthop. 64:178–185, 2003.

    PubMed  Google Scholar 

  39. Sagl, B., M. Schmid-Schwap, E. Piehslinger, M. Kundi, and I. Stavness. A dynamic jaw model with a finite-element temporomandibular joint. Front. Physiol. 10:1–12, 2019.

    Google Scholar 

  40. Schindler, H. J., S. Rues, J. C. Türp, K. Schweizerhof, and J. Lenz. Jaw clenching: muscle and joint forces, optimization strategies. J. Dent. Res. 86:843–847, 2007.

    CAS  PubMed  Google Scholar 

  41. Shimada, A., Y. Yamabe, T. Torisu, L. Baad-Hansen, H. Muarata, and P. Svensson. Measurement of dynamic bite force during mastication. J. Oral Rehabil. 39:349–356, 2012.

    CAS  PubMed  Google Scholar 

  42. Shinogaya, T., M. Bakke, C. E. Thomsen, A. Vilmann, A. Sodeyama, and M. Matsumoto. Effects of ethnicity, gender and age on clenching force and load distribution. Clin. Oral Investig. 5:63–68, 2001.

    CAS  PubMed  Google Scholar 

  43. Sonnesen, L., M. Bakke, and B. Solow. Bite force in pre-orthodontic children with unilateral crossbite. Eur. J. Orthod. 23:741–749, 2001.

    CAS  PubMed  Google Scholar 

  44. Tortopidis, D., M. F. Lyons, R. H. Baxendale, and W. H. Gilmour. The variability of bite force measurement between sessions, in different positions within the dental arch. J. Oral Rehabil. 25:681–686, 1998.

    CAS  PubMed  Google Scholar 

  45. Umesh, S., S. Padma, S. Asokan, and T. Srinivas. Fiber Bragg Grating based bite force measurement. J. Biomech. 49:2877–2881, 2016.

    PubMed  Google Scholar 

  46. van Eijden, T. M. G. J. Three-dimensional analysis of human bite-force magnitude and moment. Arch. Oral Biol. 36:535–539, 1991.

    PubMed  Google Scholar 

  47. Varga, S., S. Spalj, M. L. Varga, S. A. Milosevic, S. Mestrovic, and M. Slaj. Maximum voluntary molar bite force in subjects with normal occlusion. Eur. J. Orthod. 33:427–433, 2011.

    PubMed  Google Scholar 

  48. Waltimo, A., and M. Kononen. A novel bite force recorder and maximal isometric bite force values for healthy young adults. Scandanavian J. Dent. Res. 101:171–175, 1993.

    CAS  Google Scholar 

  49. Wilding, R. J. C. The association between chewing efficiency and occlusal contact area in man. Arch. Oral Biol. 38:589–596, 1993.

    CAS  PubMed  Google Scholar 

  50. Winter, A., A. Schurig, E. Rasche, F. Rosner, L. Kanus, and M. Schmitter. The flexural strength of CAD/CAM polymer crowns and the effect of artificial ageing on the fracture resistance of CAD/CAM polymer and ceramic single crowns. J. Mater. Sci. Mater. Med. 31:9, 2020.

    CAS  Google Scholar 

  51. Woodford, S. C., D. L. Robinson, A. Mehl, P. V. S. Lee, and D. C. Ackland. Measurement of normal and pathological mandibular and temporomandibular joint kinematics: a systematic review. J. Biomech. 111:109994, 2020.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Ackland.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodford, S.C., Robinson, D.L., Edelmann, C. et al. Low-Profile Electromagnetic Field Sensors in the Measurement and Modelling of Three-Dimensional Jaw Kinematics and Occlusal Loading. Ann Biomed Eng 49, 1561–1571 (2021). https://doi.org/10.1007/s10439-020-02688-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02688-6

Keywords

Navigation