Skip to main content

Advertisement

Log in

Entropy Analysis in Gait Research: Methodological Considerations and Recommendations

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The usage of entropy analysis in gait research has grown considerably the last two decades. The present paper reviews the application of different entropy analyses in gait research and provides recommendations for future studies. While single-scale entropy analysis such as approximate and sample entropy can be used to quantify regularity/predictability/probability, they do not capture the structural richness and component entanglement characterized by a complex system operating across multiple spatial and temporal scales. Thus, for quantification of complexity, either multiscale entropy or refined composite multiscale entropy is recommended. For both single- and multiscale-scale entropy analyses, care should be made when selecting the input parameters of tolerance window r, vector length m, time series length N and number of scales. This selection should be based on the proposed research question and the type of data collected and not copied from previous studies. Parameter consistency should be investigated and published along with the main results to ensure transparency and enable comparisons between studies. Furthermore, since the interpretation of the absolute size of both single- and multiscale entropy analyses outcomes is not straightforward, comparisons should always be made with a control condition or group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi, A. Q., and W. A. Loun. Symbolic time series analysis of temporal gait dynamics. J. Signal Process. Syst. Signal Image Video Technol. 74:417–422, 2014.

    Article  Google Scholar 

  2. Aboy, M., D. Cuesta-Frau, D. Austin, and P. Mico-Tormos. Characterization of sample entropy in the context of biomedical signal analysis. In: Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5943–5946, 2007.

  3. Acharya, U. R., S. V. Sree, C. M. Lim, P. C. Ang, M. Sekine, and T. Tamura. Comparison of walking parameters obtained from the young, elderly and adults with support. Comput. Methods Biomech. Biomed. Eng. 16:1202–1212, 2013.

    Article  Google Scholar 

  4. Ahmadi, S., N. Sepehri, C. Wu, and T. Szturm. Sample entropy of human gait center of pressure displacement: a systematic methodological analysis. Entropy 20:579, 2018.

    Article  PubMed Central  Google Scholar 

  5. Ahmadi, S., C. Wu, N. Sepehri, A. Kantikar, M. Nankar, and T. Szturm. The effects of aging and dual tasking on human gait complexity during treadmill walking: a comparative study using quantized dynamical entropy and sample entropy. J. Biomech. Eng. Trans. ASME. 140:011006, 2018.

    Article  Google Scholar 

  6. Amoud, H., H. Snoussi, D. Hewson, M. Doussot, and J. Duchene. Intrinsic mode entropy for nonlinear discriminant analysis. IEEE Signal Process. Lett. 14:297–300, 2007.

    Article  Google Scholar 

  7. Attenberger, A., and K. Buchenrieder. Wavelet-based detrending for EMG noise removal. In: 2013 20th IEEE International Conference and Workshops on Engineering of Computer Based Systems (ECBS), Scottsdale, AZ, pp. 196–202, 2013. https://doi.org/10.1109/ECBS.2013.17.

  8. Bandt, C., and B. Pompe. Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88:174102, 2002.

    Article  PubMed  Google Scholar 

  9. Ben Mansour, K., P. Gorce, and N. Rezzoug. The impact of nordic walking training on the gait of the elderly. J. Sports Sci. 36:2368–2374, 2018.

    Article  PubMed  Google Scholar 

  10. Bisi, M. C., and R. Stagni. Complexity of human gait pattern at different ages assessed using multiscale entropy: from development to decline. Gait Posture 47:37–42, 2016.

    Article  CAS  PubMed  Google Scholar 

  11. Bisi, M. C., and R. Stagni. Changes of human movement complexity during maturation: quantitative assessment using multiscale entropy. Comput. Methods Biomech. Biomed. Eng. 21:325–331, 2018.

    Article  CAS  Google Scholar 

  12. Bizovska, L., Z. Svoboda, E. Kubonova, N. Vuillerme, Z. Hirjakova, and M. Janura. The differences between overground and treadmill walking in nonlinear, entropy-based and frequency variables derived from accelerometers in young and older women—preliminary report. Acta Bioeng. Biomech. 20:93–100, 2018.

    PubMed  Google Scholar 

  13. Bizovska, L., Z. Svoboda, N. Vuillerme, and M. Janura. Multiscale and shannon entropies during gait as fall risk predictors-a prospective study. Gait Posture 52:5–10, 2017.

    Article  PubMed  Google Scholar 

  14. Buchecker, M., E. Muller, S. Wegenkittl, G. Sattlecker, and T. Stoggl. An entropy approach for evaluating adaptive motor learning processes while walking with unstable footwear. Hum. Mov. Sci. 60:48–56, 2018.

    Article  PubMed  Google Scholar 

  15. Caballero, C., K. Davids, B. Heller, J. Wheat, and F. J. Moreno. Movement variability emerges in gait as adaptation to task constraints in dynamic environments. Gait Posture 70:1–5, 2019.

    Article  PubMed  Google Scholar 

  16. Cai, S., Y. Wu, N. Fau-Xiang, N. Xiang, Z. Fau-Zhong, Z. Zhong, J. Fau-He, J. He, L. Fau-Shi, L. Shi, F. Fau-Xu, and F. Xu. Detrending knee joint vibration signals with a cascade moving average filter. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2012, pp. 4357–4360.

  17. Chen, X., I. Solomon, and K. Chon. Comparison of the use of approximate entropy and sample entropy: applications to neural respiratory signal. In: Conference Proceedings: …Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 4212–4215, 2005.

  18. Chien, J. H., M. Mukherjee, and N. Stergiou. Mastoid vibration affects dynamic postural control during gait. Ann. Biomed. Eng. 44:2774–2784, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chon, K. H., C. G. Scully, and S. Lu. Approximate entropy for all signals is the recommended threshold value r appropriate? IEEE Eng. Med. Biol. Mag. 28:18–23, 2009.

    Article  PubMed  Google Scholar 

  20. Costa, M., A. L. Goldberger, and C. K. Peng. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89:068102, 2002.

    Article  PubMed  Google Scholar 

  21. Costa, M., A. L. Goldberger, and C. K. Peng. Multiscale entropy to distinguish physiologic and synthetic RR time series. Comput. Cardiol. 29:137–140, 2002.

    Article  CAS  PubMed  Google Scholar 

  22. Costa, M., A. L. Goldberger, and C. K. Peng. Multiscale entropy analysis of biological signals. Phys. Rev. E 71:021906, 2005.

    Article  Google Scholar 

  23. Costa, M., C. K. Peng, A. L. Goldberger, and J. M. Hausdorff. Multiscale entropy analysis of human gait dynamics. Physica A 330:53–60, 2003.

    Article  Google Scholar 

  24. Costa, M. D., and A. L. Goldberger. Generalized multiscale entropy analysis: application to quantifying the complex volatility of human heartbeat time series. Entropy 17:1197–1203, 2015.

    Article  PubMed  Google Scholar 

  25. Craig, J. J., A. P. Bruetsch, S. G. Lynch, and J. M. Huisinga. Altered visual and somatosensory feedback affects gait stability in persons with multiple sclerosis. Hum. Mov. Sci. 66:355–362, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cuesta-Frau, D., P. Miró-Martinez, S. Oltra-Crespo, M. Varela-Entrecanales, M. Aboy, D. Novak, and D. Austin. Measuring body temperature time series regularity using approximate entropy and sample entropy. In: Conference Proceedings: …Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3461–3464, 2009.

  27. Delgado-Bonal, A., and A. Marshak. Approximate entropy and sample entropy: a comprehensive tutorial. Entropy 21:541, 2019.

    Article  PubMed Central  Google Scholar 

  28. Delignieres, D., and V. Marmelat. Fractal fluctuations and complexity: current debates and future challenges. Crit. Rev. Biomed. Eng. 40:485–500, 2012.

    Article  PubMed  Google Scholar 

  29. Fraser, A. M., and H. L. Swinney. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33:1134–1140, 1986.

    Article  CAS  Google Scholar 

  30. Govindan, R. B., J. D. Wilson, H. Eswaran, C. L. Lowery, and H. Preißl. Revisiting sample entropy analysis. Physica A 376:158–164, 2007.

    Article  Google Scholar 

  31. Huijben, B., K. S. van Schooten, J. H. van Dieen, and M. Pijnappels. The effect of walking speed on quality of gait in older adults. Gait Posture 65:112–116, 2018.

    Article  CAS  PubMed  Google Scholar 

  32. Humeau-Heurtier, A. The multiscale entropy algorithm and its variants: a review. Entropy 17:3110–3123, 2015.

    Article  Google Scholar 

  33. Ihlen, E. A. F., K. S. van Schooten, S. M. Bruijn, J. H. van Dieen, B. Vereijken, J. L. Helbostad, and M. Pijnappels. Improved prediction of falls in community-dwelling older adults through phase-dependent entropy of daily-life walking. Front. Aging Neurosci. 10:44, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ihlen, E. A. F., A. Weiss, A. Bourke, J. L. Helbostad, and J. M. Hausdorff. The complexity of daily life walking in older adult community-dwelling fallers and non-fallers. J. Biomech. 49:1420–1428, 2016.

    Article  PubMed  Google Scholar 

  35. Jackson, K. M. Fitting of mathematical functions to biomechanical data. IEEE Trans. Biomed. Eng. 26:122–124, 1979.

    Article  CAS  PubMed  Google Scholar 

  36. Kang, H. G., and J. B. Dingwell. Differential changes with age in multiscale entropy of electromyography signals from leg muscles during treadmill walking. PLoS ONE 11:e0162034, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Karavirta, L., M. D. Costa, A. L. Goldberger, M. P. Tulppo, D. E. Laaksonen, K. Nyman, M. Keskitalo, A. Hakkinen, and K. Hakkinen. Heart rate dynamics after combined strength and endurance training in middle-aged women: heterogeneity of responses. PLoS ONE 8:e72664, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karmakar, C. K., A. H. Khandoker, R. K. Begg, M. Palaniswami, and S. Taylor. Understanding ageing effects by approximate entropy analysis of gait variability. In: Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1965–1968, 2007.

  39. Katsavelis, D., M. Mukherjee, L. Decker, and N. Stergiou. The effect of virtual reality on gait variability. Nonlinear Dyn. Psychol. Life Sci. 14:239–256, 2010.

    Google Scholar 

  40. Katsavelis, D., M. Mukherjee, L. Decker, and N. Stergiou. Variability of lower extremity joint kinematics during backward walking in a virtual environment. Nonlinear Dyn. Psychol. Life Sci. 14:165–178, 2010.

    Google Scholar 

  41. Kaufman, M., U. Zurcher, and P. S. Sung. Entropy of electromyography time series. Physica A 386:698–707, 2007.

    Article  Google Scholar 

  42. Keller, K., T. Mangold, I. Stolz, and J. Werner. Permutation entropy: new ideas and challenges. Entropy 19:134, 2017.

    Article  Google Scholar 

  43. Khandoker, A. H., M. Palaniswami, and R. K. Begg. A comparative study on approximate entropy measure and poincare plot indexes of minimum foot clearance variability in the elderly during walking. J. Neuroeng. Rehabil. 5:4, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kirchner, M., P. Schubert, M. Liebherr, and C. T. Haas. Detrended fluctuation analysis and adaptive fractal analysis of stride time data in parkinson’s disease: Stitching together short gait trials. PLoS ONE 9:e85787, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kojima, M., S. Obuchi, O. Henmi, and N. Ikeda. Comparison of smoothness during gait between community dwelling elderly fallers and non-fallers using power spectrum entropy of acceleration time-series. J. Phys. Therapy Sci. 20:243–248, 2008.

    Article  Google Scholar 

  46. Kurz, M. J., and N. Stergiou. The aging neuromuscular system expresses uncertainty for selecting joint kinematics during gait. J. Sport Exerc. Psychol. 25:S84–S84, 2003.

    Google Scholar 

  47. Lake, D. E., J. S. Richman, M. P. Griffin, and J. R. Moorman. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283:R789–797, 2002.

    Article  CAS  PubMed  Google Scholar 

  48. Lamoth, C. J., F. J. van Deudekom, J. P. van Campen, B. A. Appels, O. J. de Vries, and M. Pijnappels. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J. Neuroeng. Rehabil. 8:2, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Leistedt, S. J. J., P. Linkowski, J. P. Lanquart, J. E. Mietus, R. B. Davis, A. L. Goldberger, and M. D. Costa. Decreased neuroautonomic complexity in men during an acute major depressive episode: analysis of heart rate dynamics. Transl. Psychiatry 1:e27, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lin, J. P., J. K. Brown, and E. G. Walsh. Soleus muscle length, stretch reflex excitability, and the contractile properties of muscle in children and adults: a study of the functional joint angle. Dev. Med. Child Neurol. 39:469–480, 1997.

    Article  CAS  PubMed  Google Scholar 

  51. Lindsay, T. R., T. D. Noakes, and S. J. McGregor. Effect of treadmill versus overground running on the structure of variability of stride timing. Percept. Mot. Skills 118:331–346, 2014.

    Article  PubMed  Google Scholar 

  52. Lipsitz, L. A., and A. L. Goldberger. Loss of complexity and aging—potential applications of fractals and chaos theory to senescence. JAMA J. Am. Med. Assoc. 267:1806–1809, 1992.

    Article  CAS  Google Scholar 

  53. Liu, C. Y., C. C. Liu, P. Shao, L. P. Li, X. Sun, X. P. Wang, and F. Liu. Comparison of different threshold values r for approximate entropy: application to investigate the heart rate variability between heart failure and healthy control groups. Physiol. Meas. 32:167–180, 2011.

    Article  PubMed  Google Scholar 

  54. Liu, X., A. Jiang, N. Xu, and J. Xue. Increment entropy as a measure of complexity for time series. Entropy 18:22, 2016.

    Article  CAS  Google Scholar 

  55. Lu, S., X. Chen, J. K. Kanters, I. C. Solomon, and K. H. Chon. Automatic selection of the threshold value r for approximate entropy. IEEE Trans. Biomed. Eng. 55:1966–1972, 2008.

    Article  PubMed  Google Scholar 

  56. Marmelat, V., N. R. Reynolds, and A. Hellman. Gait dynamics in parkinson’s disease: short gait trials “stitched” together provide different fractal fluctuations compared to longer trials. Front. Physiol. 9:861, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  57. McCamley, J., W. Denton, A. Arnold, P. C. Raffalt, and J. M. Yentes. On the calculation of sample entropy using continuous and discrete human gait data. Entropy 20:764, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Molina-Picó, A., D. Cuesta-Frau, M. Aboy, C. Crespo, P. Miró-Martinez, and S. Oltra-Crespo. Comparative study of approximate entropy and sample entropy robustness to spikes. Artif. Intell. Med. 53:97–106, 2011.

    Article  PubMed  Google Scholar 

  59. Morrison, A., J. Hale, and S. Brown. Joint range of motion entropy changes in response to load carriage in military personnel. Hum. Mov. Sci. 66:249–257, 2019.

    Article  CAS  PubMed  Google Scholar 

  60. Nikolic, Z. M., and D. B. Popovic. Predicting quadriceps muscle activity during gait with an automatic rule determination method. IEEE Trans. Biomed. Eng. 45:1081–1085, 1998.

    Article  CAS  PubMed  Google Scholar 

  61. Orter, S., D. K. Ravi, N. B. Singh, F. Vogl, W. R. Taylor, and N. Konig Ignasiak. A method to concatenate multiple short time series for evaluating dynamic behaviour during walking. PLoS ONE 14:e0218594, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pincus, S. Approximate entropy (apen) as a complexity measure. Chaos 5:110–117, 1995.

    Article  PubMed  Google Scholar 

  63. Pincus, S. M. Approximate entropy as a measure of system-complexity. Proc. Natl. Acad. Sci. USA 88:2297–2301, 1991.

    Article  CAS  PubMed  Google Scholar 

  64. Pincus, S. M., I. M. Gladstone, and R. A. Ehrenkranz. A regularity statistic for medical data analysis. J. Clin. Monit. 7:335–345, 1991.

    Article  CAS  PubMed  Google Scholar 

  65. Pincus, S. M., and A. L. Goldberger. Physiological time-series analysis—what does regularity quantify. Am. J. Physiol. 266:H1643–H1656, 1994.

    CAS  PubMed  Google Scholar 

  66. Pincus, S. M., and W. M. Huang. Approximate entropy—statistical properties and applications. Commun. Stat. Theory Methods 21:3061–3077, 1992.

    Article  Google Scholar 

  67. Raffalt, P. C., W. Denton, and J. M. Yentes. On the choice of multiscale entropy algorithm for quantification of complexity in gait data. Comput. Biol. Med. 103:93–100, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Raffalt, P. C., J. McCamley, W. Denton, and J. M. Yentes. Sampling frequency influences sample entropy of kinematics during walking. Med. Biol. Eng. Comput. 57(4):759–764, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Richman, J. S., and J. R. Moorman. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278:H2039–H2049, 2000.

    Article  CAS  PubMed  Google Scholar 

  70. Riedl, M., A. Müller, and N. Wessel. Practical considerations of permutation entropy: a tutorial review. Eur. Phys. J. Spec. Topics 222:249–262, 2013.

    Article  Google Scholar 

  71. Riva, F., M. C. Bisi, and R. Stagni. Gait variability and stability measures: minimum number of strides and within-session reliability. Comput. Biol. Med. 50:9–13, 2014.

    Article  CAS  PubMed  Google Scholar 

  72. Riva, F., E. Grimpampi, C. Mazza, and R. Stagni. Are gait variability and stability measures influenced by directional changes? Biomed. Eng. OnLine 13:56, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Riva, F., M. J. P. Toebes, M. Pijnappels, R. Stagni, and J. H. van Dieen. Estimating fall risk with inertial sensors using gait stability measures that do not require step detection. Gait Posture 38:170–174, 2013.

    Article  CAS  PubMed  Google Scholar 

  74. Sarlabous, L., A. Torres, J. A. Fiz, J. Gea, J. Martinez-Llorens, J. Morera, and R. Jane. Interpretation of the approximate entropy using fixed tolerance values as a measure of amplitude variations in biomedical signals. In: Conference Proceedings: …Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5967–5970, 2010.

  75. Sinkjaer, T., J. B. Andersen, M. Ladouceur, L. O. D. Christensen, and J. B. Nielsen. Major role for sensory feedback in soleus emg activity in the stance phase of walking in man. J. Physiol. Lond. 523:817–827, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stergiou, N. Innovative Analyses of Human Movement: Analytical Tools for Human Movement Research. Champaign: Human Kinetics, 2004.

    Google Scholar 

  77. Thomas, K. S., D. M. Russell, B. L. Van Lunen, S. R. Colberg, and S. Morrison. The impact of speed and time on gait dynamics. Hum. Mov. Sci. 54:320–330, 2017.

    Article  PubMed  Google Scholar 

  78. Tochigi, Y., N. A. Segal, T. Vaseenon, and T. D. Brown. Entropy analysis of tri-axial leg acceleration signal waveforms for measurement of decrease of physiological variability in human gait. J. Orthop. Res. 30:897–904, 2012.

    Article  PubMed  Google Scholar 

  79. Vieira, M. F., F. B. Rodrigues, E. S. G. S. de Sa, R. M. Magnani, G. C. Lehnen, N. G. Campos, and A. O. Andrade. Gait stability, variability and complexity on inclined surfaces. J. Biomech. 54:73–79, 2017.

    Article  PubMed  Google Scholar 

  80. Winter, D. A. Biomechanics and Motor Control of Human Movement. Hoboken: Wiley, 2005.

    Google Scholar 

  81. Wu, S. D., C. W. Wu, S. G. Lin, K. Y. Lee, and C. K. Peng. Analysis of complex time series using refined composite multiscale entropy. Phys. Lett. A 378:1369–1374, 2014.

    Article  CAS  Google Scholar 

  82. Wu, Y., S. Yang, F. Fau-Zheng, F. Zheng, S. Fau-Cai, S. Cai, M. Fau-Lu, M. Lu, M. Fau-Wu, and M. Wu. Removal of artifacts in knee joint vibroarthrographic signals using ensemble empirical mode decomposition and detrended fluctuation analysis. Physiol. Meas. 35(3):429, 2014.

    Article  CAS  PubMed  Google Scholar 

  83. Xiong, G. L., L. Zhang, H. S. Liu, H. J. Zou, and W. Z. Guo. A comparative study on apen, sampen and their fuzzy counterparts in a multiscale framework for feature extraction. J. Zhejiang Univ. Sci. A 11:270–279, 2010.

    Article  Google Scholar 

  84. Yentes, J. M. Entropy. In: Nonlinear Analysis for Human Movement Variability, edited by N. Stergiou. Boca Raton, FL: CRC Press, 2016, pp. 174–212.

    Google Scholar 

  85. Yentes, J. M., W. Denton, J. McCamley, P. C. Raffalt, and K. K. Schmid. Effect of parameter selection on entropy calculation for long walking trials. Gait Posture 60:128–134, 2018.

    Article  PubMed  Google Scholar 

  86. Yentes, J. M., N. Hunt, K. K. Schmid, J. P. Kaipust, D. McGrath, and N. Stergiou. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41:349–365, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health (P20 GM109090) and by SPiRE Award #I21RX003294 from the United States (U.S.) Department of Veterans Affairs. The authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer M. Yentes.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yentes, J.M., Raffalt, P.C. Entropy Analysis in Gait Research: Methodological Considerations and Recommendations. Ann Biomed Eng 49, 979–990 (2021). https://doi.org/10.1007/s10439-020-02616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02616-8

Keywords

Navigation