Skip to main content
Log in

Prediction of Individual Finger Forces Based on Decoded Motoneuron Activities

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Correction to this article was published on 29 April 2019

This article has been updated

Abstract

Accurate prediction of motor output based on neural signals is critical in human–machine interactions. The objective was to evaluate the performance of predicting individual finger forces through an estimation of the descending neural drive to the spinal motoneuron pool. High-density surface electromyogram (EMG) signals of the extensor digitorum communis muscle were obtained, and were then decomposed into individual motor unit discharge events. The frequency of the composite discharge events at the population level was used to derive the descending neural drive, which was then used to predict the finger forces. The global EMG-based approach was used as a control condition. Compared with the EMG-based approach, the experimental results show that the neural-drive-based approach can better predict the individual finger forces with higher R2 values across different force levels and across different force trajectories (steady and varying forces). These findings indicate that the neural drive estimation based on motoneuron firing activities can be used as a reliable neural-machine interface signal involving individual fingers. However, real-time implementation of this approach is needed for future clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

  • 29 April 2019

    Due to an error in production, Figure 4 in the original paper shows the root mean squared error (RMSE) between the force and the neural drive estimation. The <Emphasis Type="Italic">R</Emphasis><Superscript>2</Superscript> heat map as a function of the number of motor units and the accuracy is illustrated below.

Abbreviations

MU:

Motor unit

MUAP:

Motor unit action potential

EMG:

Electromyogram

sEMG:

Surface electromyogram

HD:

High density

EDC:

Extensor digitorum communis

MVC:

Maximal voluntary contraction

SNR:

Signal to noise ratio

ANOVA:

Analysis of variance

References

  1. Al-Timemy, A. H., G. Bugmann, J. Escudero, and N. Outram. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography. IEEE J. Biomed. Health. Inform. 17:608–618, 2013.

    Article  PubMed  Google Scholar 

  2. Boretius, T., J. Badia, A. Pascual-Font, M. Schuettler, X. Navarro, K. Yoshida, and T. Stieglitz. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens. Bioelectron. 26:62–69, 2010.

    Article  CAS  PubMed  Google Scholar 

  3. Callier, T., E. W. Schluter, G. A. Tabot, L. E. Miller, F. V. Tenore, and S. J. Bensmaia. Long-term stability of sensitivity to intracortical microstimulation of somatosensory cortex. J. Neural Eng. 12:56010, 2015.

    Article  Google Scholar 

  4. Chen, M., and P. Zhou. A novel framework based on FastICA for high density surface EMG decomposition. IEEE Trans. Neural Syst. Rehabil. Eng. 24:117–127, 2016.

    Article  CAS  PubMed  Google Scholar 

  5. Clancy, E. A., and N. Hogan. Probability density of the surface electromyogram and its relation to amplitude detectors. IEEE Trans. Biomed. Eng. 46:730–739, 1999.

    Article  CAS  PubMed  Google Scholar 

  6. Dai, C., and X. Hu. Extracting and classifying spatial muscle activation patterns in forearm flexor muscles using high-density electromyogram recordings. Int. J. Neural Syst. 29:1850025, 2019.

    Article  PubMed  Google Scholar 

  7. Dai, C., H. Shin, B. Davis, and X. Hu. Origins of common neural inputs to different compartments of the extensor digitorum communis muscle. Sci. Rep. 7:13960, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai, C., Y. Zheng, and X. Hu. Estimation of muscle force based on neural drive in a hemispheric stroke survivor. Front. Neurol. 9:187, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Davoodi, R., C. Urata, M. Hauschild, M. Khachani, and G. E. Loeb. Model-based development of neural prostheses for movement. IEEE Trans. Biomed. Eng. 54:1909–1918, 2007.

    Article  PubMed  Google Scholar 

  10. De Luca, C. J., and R. Merletti. Surface myoelectric signal cross-talk among muscles of the leg. Electroencephalogr. Clin. Neurophysiol. 69:568–575, 1988.

    Article  PubMed  Google Scholar 

  11. Farina, D., L. Mesin, S. Martina, and R. Merletti. A surface EMG generation model with multilayer cylindrical description of the volume conductor. IEEE Trans. Biomed. Eng. 51:415–426, 2004.

    Article  PubMed  Google Scholar 

  12. Farina, D., I. Vujaklija, M. Sartori, T. Kapelner, F. Negro, N. Jiang, K. Bergmeister, A. Andalib, J. Principe, and O. C. Aszmann. Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nat. Biomed. Eng. 1:25, 2017.

    Article  Google Scholar 

  13. Fuglevand, A. J., D. A. Winter, and A. E. Patla. Models of recruitment and rate coding organization in motor-unit pools. J. Neurophysiol. 70:2470–2488, 1993.

    Article  CAS  PubMed  Google Scholar 

  14. Gemperline, J. J., S. Allen, D. Walk, and W. Z. Rymer. Characteristics of motor unit discharge in subjects with hemiparesis. Muscle Nerve 18:1101–1114, 1995.

    Article  CAS  PubMed  Google Scholar 

  15. Glaser, V., A. Holobar, and D. Zazula. Real-time motor unit identification from high-density surface EMG. IEEE Trans. Neural Syst. Rehabil. Eng. 21:949–958, 2013.

    Article  PubMed  Google Scholar 

  16. Hu, X., W. Z. Rymer, and N. L. Suresh. Reliability of spike triggered averaging of the surface electromyogram for motor unit action potential estimation. Muscle Nerve 48:557–570, 2013.

    Article  PubMed  Google Scholar 

  17. Hu, X., A. K. Suresh, W. Z. Rymer, and N. L. Suresh. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography. J. Neural Eng. 13:46025, 2016.

    Article  Google Scholar 

  18. Hu, X., N. L. Suresh, C. Xue, and W. Z. Rymer. Extracting extensor digitorum communis activation patterns using high-density surface electromyography. Front. Physiol. 6:279, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hyvärinen, A., and E. Oja. Independent component analysis: algorithms and applications. Neural Netw. 13:411–430, 2000.

    Article  PubMed  Google Scholar 

  20. Keenan, K. G., D. Farina, K. S. Maluf, R. Merletti, and R. M. Enoka. Influence of amplitude cancellation on the simulated surface electromyogram. J. Appl. Physiol. 98:120–131, 2005.

    Article  PubMed  Google Scholar 

  21. Kuiken, T. A., G. A. Dumanian, R. D. Lipschutz, L. A. Miller, and K. A. Stubblefield. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 28:245–253, 2004.

    CAS  PubMed  Google Scholar 

  22. LeFever, R. S., A. P. Xenakis, and C. J. De Luca. A procedure for decomposing the myoelectric signal into its constituent action potentials-part II: execution and test for accuracy. IEEE Trans. Biomed. Eng. 29:158–164, 1982.

    Article  CAS  PubMed  Google Scholar 

  23. Merletti, R., and P. Di Torino. Standards for reporting EMG data. J Electromyogr. Kinesiol. 9:3–4, 1999.

    Google Scholar 

  24. Negro, F., S. Muceli, A. M. Castronovo, A. Holobar, and D. Farina. Multi-channel intramuscular and surface EMG decomposition by convolutive blind source separation. J. Neural Eng. 13:26027, 2016.

    Article  Google Scholar 

  25. Richard, P. D., R. E. Gander, P. A. Parker, and R. N. Scott. Multistate myoelectric control: the feasibility of 5-state control. J. Rehabil. R&D 20:84–86, 1983.

    CAS  Google Scholar 

  26. Santello, M., and C. E. Lang. Are movement disorders and sensorimotor injuries pathologic synergies? When normal multi-joint movement synergies become pathologic. Front. Hum. Neurosci. 8:1050, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thompson, C. K., F. Negro, M. D. Johnson, M. R. Holmes, L. M. McPherson, R. K. Powers, D. Farina, and C. J. Heckman. Robust and accurate decoding of motoneuron behaviour and prediction of the resulting force output. J. Physiol. 596:2643–2659, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Beek, N., D. F. Stegeman, J. C. Van Den Noort, D. H. E. J. Veeger, and H. Maas. Activity patterns of extrinsic finger flexors and extensors during movements of instructed and non-instructed fingers. J. Electromyogr. Kinesiol. 38:187–196, 2018.

    Article  PubMed  Google Scholar 

  29. Yao, W., R. J. Fuglevand, and R. M. Enoka. Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions. J. Neurophysiol. 83:441–452, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Zatsiorsky, V. M., Z.-M. Li, and M. L. Latash. Enslaving effects in multi-finger force production. Exp. Brain Res. 131:187–195, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no financial relationships that may cause a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Hu.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Cao, Y. & Hu, X. Prediction of Individual Finger Forces Based on Decoded Motoneuron Activities. Ann Biomed Eng 47, 1357–1368 (2019). https://doi.org/10.1007/s10439-019-02240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02240-1

Keywords

Navigation