Skip to main content
Log in

A Wearable Magnet-Based System to Assess Activity and Joint Flexion in Humans and Large Animals

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Functional outcomes, such as joint flexion and gait, are important indicators of efficacy in musculoskeletal research. Current technologies that objectively assess these parameters, including visual tracking systems and force plates, are challenging to deploy in long-term translational and clinical studies. To that end, we developed a wearable device that measures both physical activity and joint flexion using a single integrated sensor and magnet system, and hypothesized that it could evaluate post-operative functional recovery in an unsupervised setting. To demonstrate the feasibility of measuring joint flexion, we first compared knee motion from the wearable device to that acquired from a motion capture system to confirm that knee flexion measurements during normal human gait, predicted via changes in magnetic field strength, closely correlated with data acquired by motion capture. Using this system, we then monitored a porcine cohort after bilateral stifle arthrotomy to investigate longitudinal changes in physical activity and joint flexion. We found that unsupervised activity declined immediately after surgery, with a return to pre-operative activity occurring over a period of 2 weeks. By providing objective, individualized data on locomotion and joint function, this magnet-based system will facilitate the in vivo assessment of novel therapeutics in translational orthopaedic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Akbarshahi, M., A. G. Schache, J. W. Fernandez, R. Baker, S. Banks, and M. G. Pandy. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J. Biomech. 43:1292–1301, 2010.

    Article  PubMed  Google Scholar 

  2. Anderst, W. J., C. Les, and S. Tashman. In vivo serial joint space measurements during dynamic loading in a canine model of osteoarthritis. Osteoarthr. Cartil. 13:808–816, 2005.

    Article  CAS  PubMed  Google Scholar 

  3. Bansal, S., N. M. Keah, A. L. Neuwirth, O. O’Reilly, F. Qu, B. N. Seiber, S. Mandalapu, R. L. Mauck, and M. H. Zgonis. Large animal models of meniscus repair and regeneration: a systematic review of the state of the field. Tissue Eng. Part C Methods 11:661–672, 2017.

    Article  Google Scholar 

  4. Barthélémy, I., E. Barrey, J.-L. Thibaud, A. Uriarte, T. Voit, S. Blot, and J.-Y. Hogrel. Gait analysis using accelerometry in dystrophin-deficient dogs. Neuromuscul. Disord. 19:788–796, 2009.

    Article  PubMed  Google Scholar 

  5. Baxter, J. R., D. R. Sturnick, C. A. Demetracopoulos, S. J. Ellis, and J. T. Deland. Cadaveric gait simulation reproduces foot and ankle kinematics from population-specific inputs. J. Orthop. Res. 34:1663–1668, 2016.

    Article  PubMed  Google Scholar 

  6. Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renstrom. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164, 2006.

    Article  PubMed  Google Scholar 

  7. Bonnet, S., and R. Héliot. A magnetometer-based approach for studying human movements. IEEE Trans. Biomed. Eng. 54:1353–1355, 2007.

    Article  PubMed  Google Scholar 

  8. Brown, D. C., R. C. Boston, and J. T. Farrar. Use of an activity monitor to detect response to treatment in dogs with osteoarthritis. J. Am. Vet. Med. Assoc. 237:66–70, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cook, J. L., P. A. Smith, C. C. Bozynski, K. Kuroki, C. R. Cook, A. M. Stoker, and F. M. Pfeiffer. Multiple injections of leukoreduced platelet rich plasma reduce pain and functional impairment in a canine model of ACL and meniscal deficiency. J. Orthop. Res. 34:607–615, 2016.

    Article  CAS  PubMed  Google Scholar 

  10. Defrate, L. E., R. Papannagari, T. J. Gill, J. M. Moses, N. P. Pathare, and G. Li. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am. J. Sports Med. 34:1240–1246, 2006.

    Article  PubMed  Google Scholar 

  11. Evans, R., C. Horstman, and M. Conzemius. Accuracy and optimization of force platform gait analysis in Labradors with cranial cruciate disease evaluated at a walking gait. Vet. Surg. 34:445–449, 2005.

    Article  PubMed  Google Scholar 

  12. Favre, J., B. M. Jolles, R. Aissaoui, and K. Aminian. Ambulatory measurement of 3d knee joint angle. J. Biomech. 41:1029–1035, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Fisher, M. B., N. S. Belkin, A. H. Milby, E. A. Henning, M. Bostrom, M. Kim, C. Pfeifer, G. Meloni, G. R. Dodge, J. A. Burdick, T. P. Schaer, D. R. Steinberg, and R. L. Mauck. Cartilage repair and subchondral bone remodeling in response to focal lesions in a mini-pig model: implications for tissue engineering. Tissue Eng. Part A 21:850–860, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keegan, K. G. Evidence-based lameness detection and quantification. Vet. Clin. North Am. Equine Pract. 23:403–423, 2007.

    Article  PubMed  Google Scholar 

  15. Keegan, K. G., E. V. Dent, D. A. Wilson, J. Janicek, J. Kramer, A. Lacarrubba, D. M. Walsh, M. W. Cassells, T. M. Esther, P. Schiltz, K. E. Frees, C. L. Wilhite, J. M. Clark, C. C. Pollitt, R. Shaw, and T. Norris. Repeatability of subjective evaluation of lameness in horses. Equine Vet. J. 42:92–97, 2010.

    Article  CAS  PubMed  Google Scholar 

  16. Keegan, K. G., Y. Yonezawa, P. F. Pai, D. A. Wilson, and J. Kramer. Evaluation of a sensor-based system of motion analysis for detection and quantification of forelimb and hind limb lameness in horses. Am. J. Vet. Res. 65:665–670, 2004.

    Article  PubMed  Google Scholar 

  17. Ladha, C., J. O’Sullivan, Z. Belshaw, and L. Asher. Gaitkeeper: a system for measuring canine gait. Sensors (Basel) 17:309, 2017.

    Article  Google Scholar 

  18. Lafortune, M. A., P. R. Cavanagh, H. J. Sommer, 3rd, and A. Kalenak. Three-dimensional kinematics of the human knee during walking. J. Biomech. 25:347–357, 1992.

    Article  CAS  PubMed  Google Scholar 

  19. Lascelles, B. D., S. C. Roe, E. Smith, L. Reynolds, J. Markham, D. Marcellin-Little, M. S. Bergh, and S. C. Budsberg. Evaluation of a pressure walkway system for measurement of vertical limb forces in clinically normal dogs. Am. J. Vet. Res. 67:277–282, 2006.

    Article  PubMed  Google Scholar 

  20. Leardini, A., Z. Sawacha, G. Paolini, S. Ingrosso, R. Nativo, and M. G. Benedetti. A new anatomically based protocol for gait analysis in children. Gait Posture 26:560–571, 2007.

    Article  PubMed  Google Scholar 

  21. Lebel, K., P. Boissy, H. Nguyen, and C. Duval. Autonomous quality control of joint orientation measured with inertial sensors. Sensors (Basel) 16:1037, 2016.

    Article  Google Scholar 

  22. Maher, S. A., S. A. Rodeo, H. G. Potter, L. J. Bonassar, T. M. Wright, and R. F. Warren. A pre-clinical test platform for the functional evaluation of scaffolds for musculoskeletal defects: the meniscus. HSS J. 7:157–163, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ng, J. L., M. E. Kersh, S. Kilbreath, and M. Knothe Tate. Establishing the basis for mechanobiology-based physical therapy protocols to potentiate cellular healing and tissue regeneration. Front. Physiol. 8:303, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  24. O’Donovan, K. J., R. Kamnik, D. T. O’Keeffe, and G. M. Lyons. An inertial and magnetic sensor based technique for joint angle measurement. J. Biomech. 40:2604–2611, 2007.

    Article  PubMed  Google Scholar 

  25. Olsen, E., P. H. Andersen, and T. Pfau. Accuracy and precision of equine gait event detection during walking with limb and trunk mounted inertial sensors. Sensors (Basel) 12:8145–8156, 2012.

    Article  Google Scholar 

  26. Pfeifer, C. G., M. B. Fisher, J. L. Carey, and R. L. Mauck. Impact of guidance documents on translational large animal studies of cartilage repair. Sci. Transl. Med. 7:310, 2015.

    Article  Google Scholar 

  27. Pfeifer, C. G., S. D. Kinsella, A. H. Milby, M. B. Fisher, N. S. Belkin, R. L. Mauck, and J. L. Carey. Development of a large animal model of osteochondritis dissecans of the knee: a pilot study. Orthop. J. Sports Med. 3:2325967115570019, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qu, F., M. P. Pintauro, J. E. Haughan, E. A. Henning, J. L. Esterhai, T. P. Schaer, R. L. Mauck, and M. B. Fisher. Repair of dense connective tissues via biomaterial-mediated matrix reprogramming of the wound interface. Biomaterials 39:85–94, 2015.

    Article  CAS  PubMed  Google Scholar 

  29. Rajagopal, A., C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks, and S. L. Delp. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63:2068–2079, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Roepstorff, L., T. Wiestner, M. A. Weishaupt, and E. Egenvall. Comparison of microgyro-based measurements of equine metatarsal/metacarpal bone to a high speed video locomotion analysis system during treadmill locomotion. Vet. J. 198(Suppl 1):e157–e160, 2013.

    Article  PubMed  Google Scholar 

  31. Schatti, O., S. Grad, J. Goldhahn, G. Salzmann, Z. Li, M. Alini, and M. J. Stoddart. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur. Cell Mater. 22:214–225, 2011.

    Article  CAS  PubMed  Google Scholar 

  32. Shin, J. H., B. Greer, C. H. Hakim, Z. Zhou, Y. C. Chung, Y. Duan, Z. He, and D. Duan. Quantitative phenotyping of duchenne muscular dystrophy dogs by comprehensive gait analysis and overnight activity monitoring. PLoS ONE 8:e59875, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stavrakakis, S., J. H. Guy, O. M. Warlow, G. R. Johnson, and S. A. Edwards. Longitudinal gait development and variability of growing pigs reared on three different floor types. Animal 8:338–346, 2014.

    Article  CAS  PubMed  Google Scholar 

  34. Zumwalt, A. C., M. Hamrick, and D. Schmitt. Force plate for measuring the ground reaction forces in small animal locomotion. J. Biomech. 39:2877–2881, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH (T32 AR007132), the Penn Center for Musculoskeletal Disorders (P30 AR069619), and the Montague Research Award. The authors thank Drs. Emily L. Meidel, Christian G. Pfeifer, and James M. Friedman for their assistance with the large animal model.

Disclosure

Feini Qu and Peter Gebhard are inventors on patent application US20170231533 and co-founders of Animotion, LLC. Feini Qu, Peter Gebhard, and Brendan Stoeckl have equity interest in Animotion, LLC, which is developing products related to the research described in this paper. All remaining co-authors have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Mauck.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, F., Stoeckl, B.D., Gebhard, P.M. et al. A Wearable Magnet-Based System to Assess Activity and Joint Flexion in Humans and Large Animals. Ann Biomed Eng 46, 2069–2078 (2018). https://doi.org/10.1007/s10439-018-2105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2105-8

Keywords

Navigation