Skip to main content

Advertisement

Log in

On the Significance of Systolic Flow Waveform on Aortic Valve Energy Loss

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study aims to quantitatively and qualitatively assess energy dissipation in the aortic valve as a function of systolic aortic flow waveform representing pathologies where flow time-to-peak is delayed. A bioprosthetic valve was tested in the aortic position of a left-heart simulator under physiological pressure and flow conditions. The flow loop piston pump was programmed to generate three different flow waveforms each with a different peak time annotated as early peak (EP) with a rapid acceleration, mid peak (MP) and late peak (LP) with a rapid deceleration. Energy dissipation was calculated from flow and pressure measurements while sinus vorticity dynamics were evaluated using time-resolved planar particle image velocimetry. Average pressure gradients during systole are found 30.2 ± 0.19, 30.7 ± 0.25 and 32.9 ± 0.29 mmHg and average dissipation over systole is found 0.95 ± 0.026, 1.05 ± 0.034 and 1.25 ± 0.043 W for EP, MP and LP respectively. As systole’s acceleration phase is slower, sinus vortices are more likely to form, necessitating more energy exchange from shear layers inducing more viscous dissipation. EP found in healthy individuals is superior in terms of reducing energy dissipation and increasing aortic valve efficiency. In the context of possible left ventricular dysfunction and aortic stenosis, this means that delayed time-to-peak in the aortic flow waveform seen is not compensatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dasi, L. P., L. Ge, H. A. Simon, F. Sotiropoulos, and A. P. Yoganathan. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19:067105, 2007.

    Article  CAS  Google Scholar 

  2. Dasi, L. P., H. Hatoum, A. Kheradvar, R. Zareian, S. H. Alavi, W. Sun, C. Martin, T. Pham, Q. Wang, and P. A. Midha. On the mechanics of transcatheter aortic valve replacement. Ann. Biomed. Eng. 45:310–331, 2017.

    Article  PubMed  Google Scholar 

  3. Fukuta, H., and W. C. Little. The cardiac cycle and the physiologic basis of left ventricular contraction, ejection, relaxation, and filling. Heart Fail. Clin. 4:1–11, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gao, L., and S. C. M. Yu. Development of the trailing shear layer in a starting jet during pinch-off. J. Fluid Mech. 700:382–405, 2012.

    Article  Google Scholar 

  5. Gharib, M., E. Rambod, and K. Shariff. A universal time scale for vortex ring formation. J. Fluid Mech. 360:121–140, 1998.

    Article  CAS  Google Scholar 

  6. Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Effect of severe bioprosthetic valve tissue ingrowth and inflow calcification on valve-in-valve performance. J. Biomech. 74:171–179, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Ann. Thorac. Surg. 2018. https://doi.org/10.1016/j.athoracsur.2018.01.070.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hatoum, H., J. Dollery, S. M. Lilly, J. Crestanello, and L. P. Dasi. Impact of patient morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in-vitro study. J. Thorac. Cardiovasc. Surg. 2018. https://doi.org/10.1016/j.jtcvs.2018.05.086.

    Article  PubMed  Google Scholar 

  9. Hatoum, H., F. Heim, and L. P. Dasi. Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices. J. Mech. Behav. Biomed. Mater. 86:232–239, 2018.

    Article  CAS  PubMed  Google Scholar 

  10. Hatoum, H., B. L. Moore, P. Maureira, J. Dollery, J. A. Crestanello, and L. P. Dasi. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 54(1):32–43, 2017.

    Article  Google Scholar 

  11. Hatoum, H., A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, and L. P. Dasi. An in-vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 2018. https://doi.org/10.1016/j.jtcvs.2018.05.042.

    Article  PubMed  Google Scholar 

  12. Ho, S., H. Banerjee, Y. Y. Foo, H. Godaba, W. M. M. Aye, J. Zhu, and C. H. Yap. Experimental characterization of a dielectric elastomer fluid pump and optimizing performance via composite materials. J. Intell. Mater. Syst. Struct. 28:3054–3065, 2017.

    Article  CAS  Google Scholar 

  13. Kamimura, D., S. Hans, T. Suzuki, E. R. Fox, M. E. Hall, S. K. Musani, M. R. McMullan, and W. C. Little. Delayed time to peak velocity is useful for detecting severe aortic stenosis. J. Am. Heart Assoc. 5:e003907, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kanski, M., P. M. Arvidsson, J. Töger, R. Borgquist, E. Heiberg, M. Carlsson, and H. Arheden. Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4d flow data. J. Cardiovasc. Magn. Reson. 17:111, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li, Z., Y. Wang, C. C. Foo, H. Godaba, J. Zhu, and C. H. Yap. The mechanism for large-volume fluid pumping via reversible snap-through of dielectric elastomer. J. Appl. Phys. 122:084503, 2017.

    Article  CAS  Google Scholar 

  16. Li, Z., J. Zhu, C. C. Foo, and C. H. Yap. A robust dual-membrane dielectric elastomer actuator for large volume fluid pumping via snap-through. Appl. Phys. Lett. 111:212901, 2017.

    Article  CAS  Google Scholar 

  17. Maxworthy, T. The structure and stability of vortex rings. J. Fluid Mech. 51:15–32, 1972.

    Article  Google Scholar 

  18. Mohseni, K., and M. Gharib. A model for universal time scale of vortex ring formation. Phys. Fluids 10:2436–2438, 1998.

    Article  CAS  Google Scholar 

  19. Mohseni, K., H. Ran, and T. Colonius. Numerical experiments on vortex ring formation. J. Fluid Mech. 430:267–282, 2001.

    Article  Google Scholar 

  20. Moore, B. L., and L. P. Dasi. Coronary flow impacts aortic leaflet mechanics and aortic sinus hemodynamics. Ann. Biomed. Eng. 43:2231–2241, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Okafor, I. U., A. Santhanakrishnan, V. S. Raghav, and A. P. Yoganathan. Role of mitral annulus diastolic geometry on intraventricular filling dynamics. J. Biomech. Eng. 137:121007, 2015.

    Article  PubMed  Google Scholar 

  22. Reul, H, and Talukder, N, Heart valve mechanics. In: Quantitative Cardiovascular Studies Clinical and Research Applications of Engineering Principles, 1979, pp. 527–564.

  23. Reynolds, O. On the resistance encountered by vortex rings, and the relation between the vortex rings and streamlines of a disk. Nature 14:477–479, 1876.

    Google Scholar 

  24. Vasudevan, V., A. J. J. Low, S. P. Annamalai, S. Sampath, K. K. Poh, T. Totman, M. Mazlan, G. Croft, A. M. Richards, and D. P. V. de Kleijn. Flow dynamics and energy efficiency of flow in the left ventricle during myocardial infarction. Biomech. Model. Mechanobiol. 16:1503–1517, 2017.

    Article  PubMed  Google Scholar 

  25. Wang, Y., Z. Li, L. Qin, G. Caddy, C. H. Yap, and J. Zhu. Dielectric elastomer fluid pump of high pressure and large volume via synergistic snap-through. J. Appl. Mech. 85:101003, 2018.

    Article  CAS  Google Scholar 

  26. Yap, C.-H., L. P. Dasi, and A. P. Yoganathan. Dynamic hemodynamic energy loss in normal and stenosed aortic valves. J. Biomech. Eng. 132:021005, 2010.

    Article  PubMed  Google Scholar 

  27. Yoganathan, A. P., Z. He, and S. Casey Jones. Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6:331–362, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research done was partly supported by National Institutes of Health (NIH) under Award Number R01HL119824.

Conflict of interest

Dr. Dasi reports having a patent application filed on novel polymeric valves, vortex generator and super-hydrophobic valve designs. No other conflicts were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Prasad Dasi.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10439_2018_2102_MOESM1_ESM.mp4

Video 1: Main sinus flow streak visualization for Early Peak, Mid Peak and Late Peak cases. Supplementary material 1 (MP4 4760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatoum, H., Moore, B.L. & Dasi, L.P. On the Significance of Systolic Flow Waveform on Aortic Valve Energy Loss. Ann Biomed Eng 46, 2102–2111 (2018). https://doi.org/10.1007/s10439-018-2102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2102-y

Keywords

Navigation