Skip to main content

Advertisement

Log in

Effects of Level, Loading Rate, Injury and Repair on Biomechanical Response of Ovine Cervical Intervertebral Discs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A need exists for pre-clinical large animal models of the spine to translate biomaterials capable of repairing intervertebral disc (IVD) defects. This study characterized the effects of cervical spinal level, loading rate, injury and repair with genipin-crosslinked fibrin (FibGen) on axial and torsional mechanics in an ovine cervical spine model. Cervical IVDs C2–C7 from nine animals were tested with cyclic tension–compression (− 240 to 100 N) and cyclic torsion (± 2° and ± 4°) tests at three rates (0.1, 1 and 2 Hz) in intact, injured and repaired conditions. Intact IVDs from upper cervical levels (C2–C4) had significantly higher torque range and torsional stiffness and significantly lower axial range of motion (ROM) and tensile compliance than IVDs from lower cervical levels (C5–C7). A tenfold increase in loading rate significantly increased torque range and torsional stiffness 4–8% (depending on amplitude) (p < 0.001). When normalized to intact, FibGen significantly restored torque range (FibGen: 0.96 ± 0.14, Injury: 0.88 ± 0.14, p = 0.03) and axial ROM (FibGen: 1.00 ± 0.05, Injury: 1.04 ± 0.15, p = 0.02) compared to Injury, with a values of 1 indicating full repair. Cervical spinal level must be considered for controlling biomechanical evaluations, and FibGen restored some torsional and axial biomechanical properties to intact levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Barth, M., M. Diepers, C. Weiss, and C. Thomé. Two-year outcome after lumbar microdiscectomy: Part 2: radiographic evaluation and correlation with clinical outcome. Spine 2008. https://doi.org/10.1097/BRS.0b013e31816201a6.

    Article  PubMed  Google Scholar 

  2. Beckstein, J. C., S. Sen, T. P. Schaer, E. J. Vresilovic, and D. M. Elliott. Comparison of animal discs used in disc research to human lumbar disc. Spine 33(6):E166–E173, 2008.

    Article  PubMed  Google Scholar 

  3. Bezci, S. E., E. O. Klineberg, and G. D. O’Connell. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs. J. Mech. Behav. Biomed. Mater. 77:353–359, 2018.

    Article  PubMed  Google Scholar 

  4. Bouma, G. J., M. Barth, D. Ledic, and M. Vilendecic. The high-risk discectomy patient: prevention of reherniation in patients with large anular defects using an anular closure device. Eur. Spine J. 22(5):1030–1036, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bowles, R. D., and L. A. Setton. Biomaterials for intervertebral disc regeneration and repair. Biomaterials 15(129):54–67, 2017.

    Article  CAS  Google Scholar 

  6. Busscher, I., J. J. W. Ploegmakers, G. J. Verkerke, and A. G. Veldhuizen. Comparative anatomical dimensions of the complete human and porcine spine. Eur. Spine J. 19(7):1104–1114, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Carragee, E. J., M. Y. Han, P. W. Suen, and D. Kim. Clinical outcomes after lumbar discectomy for sciatica: the effects of fragment type and anular competence. J. Bone Jt Surg. Am. 85-A(1):102–108, 2003.

    Article  Google Scholar 

  8. Carragee, E. J., A. O. Spinnickie, T. F. Alamin, and S. Paragioudakis. A prospective controlled study of limited versus subtotal posterior discectomy: short-term outcomes in patients with herniated lumbar intervertebral discs and large posterior anular defect. Spine 31(6):653–657, 2006.

    Article  PubMed  Google Scholar 

  9. Costi, J. J., I. A. Stokes, M. G. Gardner-Morse, and J. C. Iatridis. Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions. Spine 33(16):1731–1738, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Daneyemez, M., A. Sali, S. Kahraman, A. Beduk, and N. Seber. Outcome analyses in 1072 surgically treated lumbar disc herniations. Minim. Invasive Neurosurg. 42(2):63–68, 1999.

    Article  CAS  PubMed  Google Scholar 

  11. Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6(3):241–252, 1964.

    Article  Google Scholar 

  12. Elliott, D. M., C. S. Yerramalli, J. C. Beckstein, J. I. Boxberger, W. Johannessen, and E. J. Vresilovic. The effect of relative needle diameter in puncture and sham injection animal models of degeneration. Spine 33(6):588–596, 2008.

    Article  PubMed  Google Scholar 

  13. Gardner-Morse, M. G., and I. A. Stokes. Physiological axial compressive preloads increase motion segment stiffness, linearity and hysteresis in all six degrees of freedom for small displacements about the neutral posture. J. Orthop. Res. 21(3):547–552, 2003.

    Article  PubMed  Google Scholar 

  14. GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1603–1658, 2016.

    Article  Google Scholar 

  15. Guterl, C. C., E. Y. See, S. B. G. Blanquer, A. Pandit, S. J. Ferguson, L. M. Benneker, et al. Challenges and strategies in the repair of ruptured annulus fibrosus. Eur. Cell Mater. 2(25):1–21, 2013.

    Google Scholar 

  16. Haughton, V. M., B. Rogers, M. E. Meyerand, and D. K. Resnick. Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. Am. J. Neuroradiol. 23(7):1110–1116, 2002.

    PubMed  PubMed Central  Google Scholar 

  17. Horner, H. A., and J. P. Urban. 2001 Volvo Award Winner in Basic Science Studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26(23):2543–2549, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Iatridis, J. C., A. J. Michalek, D. Purmessur, and C. L. Korecki. Localized intervertebral disc injury leads to organ level changes in structure, cellularity, and biosynthesis. Cell. Mol. Bioeng. 2(3):437–447, 2009.

    Article  PubMed  Google Scholar 

  19. Iatridis, J. C., S. B. Nicoll, A. J. Michalek, B. A. Walter, and M. S. Gupta. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 13(3):243–262, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Likhitpanichkul M., M. Dreischarf, S. Illien-Junger, B. A. Walter, T. Nukaga, R. G. Long, et al. Fibrin-genipin adhesive hydrogel for annulus fibrosus repair: performance evaluation with large animal organ culture, in situ biomechanics, and in vivo degradation tests. Eur. Cell Mater. 28:25–37; discussion 37, 2014.

  21. Livshits, G., M. Popham, I. Malkin, P. N. Sambrook, A. J. Macgregor, T. Spector, et al. Lumbar disc degeneration and genetic factors are the main risk factors for low back pain in women: the UK Twin Spine Study. Ann. Rheum. Dis. 70(10):1740–1745, 2011.

    Article  PubMed  Google Scholar 

  22. Long, R. G., A. Bürki, P. Zysset, D. Eglin, D. W. Grijpma, S. B. G. Blanquer, et al. Mechanical restoration and failure analyses of composite repair strategy for annulus fibrosus. Acta Biomater. 1–30, 2015.

  23. Long, R. G., O. M. Torre, W. W. Hom, D. J. Assael, and J. C. Iatridis. Design requirements for annulus fibrosus repair: review of forces, displacements, and material properties of the intervertebral disk and a summary of candidate hydrogels for repair. J. Biomech. Eng. 138(2):021007, 2016.

    Article  PubMed  Google Scholar 

  24. Maroudas, A., R. A. Stockwell, A. Nachemson, and J. Urban. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J. Anat. 120(Pt 1):113–130, 1975.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Masuda, K., Y. Aota, C. Muehleman, Y. Imai, M. Okuma, E. J. Thonar, et al. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30(1):5–14, 2005.

    Article  PubMed  Google Scholar 

  26. McGirt, M. J., S. Eustacchio, P. Varga, M. Vilendecic, M. Trummer, M. Gorensek, et al. A prospective cohort study of close interval computed tomography and magnetic resonance imaging after primary lumbar discectomy: factors associated with recurrent disc herniation and disc height loss. Spine 34(19):2044–2051, 2009.

    Article  PubMed  Google Scholar 

  27. Melrose, J., P. Ghosh, T. K. Taylor, A. Hall, O. L. Osti, B. Vernon-Roberts, et al. A longitudinal study of the matrix changes induced in the intervertebral disc by surgical damage to the annulus fibrosus. J. Orthop. Res. 10(5):665–676, 1992.

    Article  CAS  PubMed  Google Scholar 

  28. Melrose, J., P. Ghosh, T. K. Taylor, B. Vernon-Roberts, J. Latham, and R. Moore. Elevated synthesis of biglycan and decorin in an ovine annular lesion model of experimental disc degeneration. Eur. Spine J. 6(6):376–384, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Melrose, J., P. Ghosh, and T. K. Taylor. A comparative analysis of the differential spatial and temporal distributions of the large (aggrecan, versican) and small (decorin, biglycan, fibromodulin) proteoglycans of the intervertebral disc. J. Anat. 198(Pt 1):3–15, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Melrose, J., S. Roberts, S. Smith, J. Menage, and P. Ghosh. Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine 27(12):1278–1285, 2002.

    Article  PubMed  Google Scholar 

  31. Melrose, J., S. Smith, and P. Ghosh. Assessment of the cellular heterogeneity of the ovine intervertebral disc: comparison with synovial fibroblasts and articular chondrocytes. Eur. Spine J. 12(1):57–65, 2003.

    PubMed  Google Scholar 

  32. Melrose, J., S. M. Smith, C. B. Little, R. J. Moore, B. Vernon-Roberts, and R. D. Fraser. Recent advances in annular pathobiology provide insights into rim-lesion mediated intervertebral disc degeneration and potential new approaches to annular repair strategies. Eur. Spine J. 17(9):1131–1148, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Melrose, J., C. Shu, C. Young, R. Ho, M. M. Smith, A. A. Young, et al. Mechanical destabilization induced by controlled annular incision of the intervertebral disc dysregulates metalloproteinase expression and induces disc degeneration. Spine 37(1):18–25, 2012.

    Article  PubMed  Google Scholar 

  34. Michalek, A. J., and J. C. Iatridis. Height and torsional stiffness are most sensitive to annular injury in large animal intervertebral discs. Spine J. 12(5):425–432, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Michalek, A. J., K. L. Funabashi, and J. C. Iatridis. Needle puncture injury of the rat intervertebral disc affects torsional and compressive biomechanics differently. Eur. Spine J. 19(12):2110–2116, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moore, R. J., B. Vernon-Roberts, R. D. Fraser, O. L. Osti, and M. Schembri. The origin and fate of herniated lumbar intervertebral disc tissue. Spine 21(18):2149–2155, 1996.

    Article  CAS  PubMed  Google Scholar 

  37. O’Connell, G. D., E. J. Vresilovic, and D. M. Elliott. Comparison of animals used in disc research to human lumbar disc geometry. Spine 32(3):328–333, 2007.

    Article  PubMed  Google Scholar 

  38. Parker, S. L., G. Grahovac, D. Vukas, M. Vilendecic, D. Ledic, M. J. McGirt, et al. Effect of an annular closure device (Barricaid) on same-level recurrent disk herniation and disk height loss after primary lumbar discectomy: two-year results of a multicenter prospective cohort study. Clin. Spine Surg. 29(10):454–460, 2016.

    Article  PubMed  Google Scholar 

  39. Pearcy, M. J., and S. B. Tibrewal. Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography. Spine 9(6):582–587, 1984.

    Article  CAS  PubMed  Google Scholar 

  40. Reitmaier, S., H. Schmidt, R. Ihler, T. Kocak, N. Graf, A. Ignatius, et al. Preliminary investigations on intradiscal pressures during daily activities: an in vivo study using the merino sheep. PLoS ONE 8(7):e69610, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reitmaier, S., D. Volkheimer, N. Berger-Roscher, H.-J. Wilke, and A. Ignatius. Increase or decrease in stability after nucleotomy? Conflicting in vitro and in vivo results in the sheep model. J. R. Soc. Interface 11(100):20140650, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Reitmaier, S., J. Schuelke, H. Schmidt, D. Volkheimer, A. Ignatius, and H.-J. Wilke. Spinal fusion without instrumentation—experimental animal study. Clin. Biomech. (Bristol Avon) 46:6–14, 2017.

    Article  Google Scholar 

  43. Schek, R. M., A. J. Michalek, and J. C. Iatridis. Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair. Eur. Cell Mater. 18(21):373–383, 2011.

    Article  Google Scholar 

  44. Schleich, C., A. Müller-Lutz, L. Zimmermann, J. Boos, B. Schmitt, H.-J. Wittsack, et al. Biochemical imaging of cervical intervertebral discs with glycosaminoglycan chemical exchange saturation transfer magnetic resonance imaging: feasibility and initial results. Skelet. Radiol. 45(1):79–85, 2016.

    Article  Google Scholar 

  45. Showalter, B. L., J. C. Beckstein, J. T. Martin, E. E. Beattie, A. A. Espinoza Orías, T. P. Schaer, et al. Comparison of animal discs used in disc research to human lumbar disc: torsion mechanics and collagen content. Spine 37(15):E900–E907, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shu, C., C. Hughes, S. M. Smith, M. M. Smith, A. Hayes, B. Caterson, et al. The ovine newborn and human foetal intervertebral disc contain perlecan and aggrecan variably substituted with native 7D4 CS sulphation motif: spatiotemporal immunolocalisation and co-distribution with Notch-1 in the human foetal disc. Glycoconj. J. 30(7):717–725, 2013.

    Article  CAS  PubMed  Google Scholar 

  47. Smit, T. H. The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations. Eur. Spine J. 11(2):137–144, 2002.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Trout, J. J., J. A. Buckwalter, K. C. Moore, and S. K. Landas. Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell 14(2):359–369, 1982.

    Article  CAS  PubMed  Google Scholar 

  49. Trummer, M., S. Eustacchio, M. Barth, P. D. Klassen, and S. Stein. Protecting facet joints post-lumbar discectomy: Barricaid annular closure device reduces risk of facet degeneration. Clin. Neurol. Neurosurg. 115(8):1440–1445, 2013.

    Article  PubMed  Google Scholar 

  50. Wilke, H. J., A. Kettler, K. H. Wenger, and L. E. Claes. Anatomy of the sheep spine and its comparison to the human spine. Anat. Rec. 247(4):542–555, 1997.

    Article  CAS  PubMed  Google Scholar 

  51. Wilke, H. J., A. Kettler, and L. E. Claes. Are sheep spines a valid biomechanical model for human spines? Spine 22(20):2365–2374, 1997.

    Article  CAS  PubMed  Google Scholar 

  52. Wilke, H.-J., L. Ressel, F. Heuer, N. Graf, and S. Rath. Can prevention of a reherniation be investigated? Establishment of a herniation model and experiments with an anular closure device. Spine 38(10):E587–E593, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

No competing financial interests exist. This Research was funded by National Institute for Arthritis and Musculoskeletal and Skin Diseases (R01AR057397), the Whitaker Foundation, and a Collaborative Research Partner Program Grant on Annulus Fibrosus Rupture from the AO Foundation, Davos, Switzerland. The authors gratefully acknowledge important technical contributions of Patrick Hörnlimann and Dieter Wahl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Iatridis.

Additional information

Associate Editor Michael Gower oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, R.G., Zderic, I., Gueorguiev, B. et al. Effects of Level, Loading Rate, Injury and Repair on Biomechanical Response of Ovine Cervical Intervertebral Discs. Ann Biomed Eng 46, 1911–1920 (2018). https://doi.org/10.1007/s10439-018-2077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2077-8

Keywords

Navigation