Skip to main content

Advertisement

Log in

Estimating Left Ventricular Elastance from Aortic Flow Waveform, Ventricular Ejection Fraction, and Brachial Pressure: An In Silico Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Although left ventricular end-systolic elastance (Ees) serves as a major index of cardiac contractility, a widely-accepted noninvasive estimation of Ees does not exist. To overcome this limitation, we developed a two-step inverse method that allows for its noninvasive estimation from measurements of aortic flow and brachial pressure using a previously validated one-dimensional model of the cardiovascular system. In a first step, aortic flow is set as the model input and the output brachial pressure is compared with the “real” values. Subsequently, the basic properties of the arterial tree are tuned according to an optimization algorithm. In a second step, the same optimization method is used to estimate the elastance parameters that produce an aortic flow waveform that matches the “real” one. Additional knowledge of the ejection fraction can allow for the accurate estimation of the entire PV loop, including end-diastolic elastance. The method was tested on a database of 50 different in silico hemodynamic cases generated after varying cardiac and arterial model parameters. Implementation of the method yielded good agreement (r = 0.99) and accuracy (n-RMSE = 4%) between “real” and estimated values of Ees. Furthermore, a sensitivity analysis revealed that errors due to poor arterial adjustment and measurements are small (≤ 8% for Ees).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adler, D., E. S. Monrad, E. H. Sonnenblick, O. M. Hess, and H. P. Krayenbuehl. Time to dp/dtmax, a useful index for evaluation of contractility in the catheterization laboratory. Clin. Cardiol. 19:397–403, 1996.

    Article  CAS  PubMed  Google Scholar 

  2. Baan, J., and E. T. Van der Velde. Sensitivity of left ventricular end-systolic pressure–volume relation to type of loading intervention in dogs. Circ. Res. 62:1247–1258, 1988.

    Article  CAS  PubMed  Google Scholar 

  3. Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet Lond. Engl. 1:307–310, 1986.

    Article  CAS  Google Scholar 

  4. Bonnet, B., F. Jourdan, G. du Cailar, and P. Fesler. Noninvasive evaluation of left ventricular elastance according to pressure–volume curves modeling in arterial hypertension. Am. J. Physiol. Heart Circ. Physiol. 313:H237–H243, 2017.

    Article  PubMed  Google Scholar 

  5. Boutouyrie, P., S. Laurent, A. Benetos, X. J. Girerd, A. P. Hoeks, and M. E. Safar. Opposing effects of ageing on distal and proximal large arteries in hypertensives. J. Hypertens. Suppl. 10:S87–91, 1992.

    Article  CAS  PubMed  Google Scholar 

  6. Burkhoff, D., P. P. De Tombe, and W. C. Hunter. Impact of ejection on magnitude and time course of ventricular pressure-generating capacity. Am. J. Physiol. 265:H899–H909, 1993.

    CAS  PubMed  Google Scholar 

  7. Burkhoff, D., S. Sugiura, D. T. Yue, and K. Sagawa. Contractility-dependent curvilinearity of end-systolic pressure–volume relations. Am. J. Physiol. 252:H1218–H1227, 1987.

    CAS  PubMed  Google Scholar 

  8. Chen, C.-H., B. Fetics, E. Nevo, C. E. Rochitte, K.-R. Chiou, P.-A. Ding, M. Kawaguchi, and D. A. Kass. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J. Am. Coll. Cardiol. 38:2028–2034, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, C. H., M. Nakayama, E. Nevo, B. J. Fetics, W. L. Maughan, and D. A. Kass. Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J. Am. Coll. Cardiol. 32:1221–1227, 1998.

    Article  CAS  PubMed  Google Scholar 

  10. Chirinos, J. A. Ventricular–arterial coupling: invasive and non-invasive assessment. Artery Res. 2013. https://doi.org/10.1016/j.artres.2012.12.002.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Davidson, S., C. Pretty, A. Pironet, S. Kamoi, J. Balmer, T. Desaive, and J. G. Chase. Minimally invasive, patient specific, beat-by-beat estimation of left ventricular time varying elastance. Biomed. Eng. Online 16(1):42, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Feldman, M. D., P. H. Pak, C. C. Wu, H. L. Haber, C. M. Heesch, J. D. Bergin, E. R. Powers, T. D. Cowart, W. Johnson, A. M. Feldman, and D. A. Kass. Acute cardiovascular effects of OPC-18790 in patients with congestive heart failure. Time- and dose-dependence analysis based on pressure–volume relations. Circulation 93:474–483, 1996.

    Article  CAS  PubMed  Google Scholar 

  13. Holenstein, R., P. Niederer, and M. Anliker. A viscoelastic model for use in predicting arterial pulse waves. J. Biomech. Eng. 102:318–325, 1980.

    Article  CAS  PubMed  Google Scholar 

  14. Kass, D. A., R. Beyar, E. Lankford, M. Heard, W. L. Maughan, and K. Sagawa. Influence of contractile state on curvilinearity of in situ end-systolic pressure–volume relations. Circulation 79:167–178, 1989.

    Article  CAS  PubMed  Google Scholar 

  15. Kass, D. A., and W. L. Maughan. From “Emax” to pressure–volume relations: a broader view. Circulation 77:1203–1212, 1988.

    Article  CAS  PubMed  Google Scholar 

  16. Kelly, R. P., C. T. Ting, T. M. Yang, C. P. Liu, W. L. Maughan, M. S. Chang, and D. A. Kass. Effective arterial elastance as index of arterial vascular load in humans. Circulation 86:513–521, 1992.

    Article  CAS  PubMed  Google Scholar 

  17. Kimoto, E., T. Shoji, K. Shinohara, M. Inaba, Y. Okuno, T. Miki, H. Koyama, M. Emoto, and Y. Nishizawa. Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes 52:448–452, 2003.

    Article  CAS  PubMed  Google Scholar 

  18. Klotz, S., I. Hay, M. L. Dickstein, G.-H. Yi, J. Wang, M. S. Maurer, D. A. Kass, and D. Burkhoff. Single-beat estimation of end-diastolic pressure–volume relationship: a novel method with potential for noninvasive application. Am. J. Physiol. Heart Circ. Physiol. 291:H403–H412, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Kono, A., W. L. Maughan, K. Sunagawa, K. Hamilton, K. Sagawa, and M. L. Weisfeldt. The use of left ventricular end-ejection pressure and peak pressure in the estimation of the end-systolic pressure–volume relationship. Circulation 70:1057–1065, 1984.

    Article  CAS  PubMed  Google Scholar 

  20. Langewouters G. J. Visco-elasticity of the human aorta in vitro in relation to pressure and age. PhD Thesis, Free University of Amsterdam, 1982.

  21. Mirsky, I., and W. W. Parmley. Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circ. Res. 33:233–243, 1973.

    Article  CAS  PubMed  Google Scholar 

  22. Mynard, J. P., M. R. Davidson, D. J. Penny, and J. J. Smolich. A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models. Int. J. Numer. Methods Biomed. Eng. 28:626–641, 2012.

    Article  CAS  Google Scholar 

  23. Pahlevan, N. M., D. G. Rinderknecht, P. Tavallali, M. Razavi, T. T. Tran, M. W. Fong, R. A. Kloner, M. Csete, and M. Gharib. Noninvasive iPhone Measurement of Left Ventricular Ejection Fraction Using Intrinsic Frequency Methodology. Crit. Care Med. 45:1115–1120, 2017.

    Article  PubMed  Google Scholar 

  24. Pak, P. H., W. L. Maughan, K. L. Baughman, R. S. Kieval, and D. A. Kass. Mechanism of acute mechanical benefit from VDD pacing in hypertrophied heart: similarity of responses in hypertrophic cardiomyopathy and hypertensive heart disease. Circulation 98:242–248, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Quiñones, M. A., C. M. Otto, M. Stoddard, A. Waggoner, W. A. Zoghbi, and Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 15:167–184, 2002.

  26. Reymond, P., Y. Bohraus, F. Perren, F. Lazeyras, and N. Stergiopulos. Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 301:H1173–H1182, 2011.

    Article  CAS  PubMed  Google Scholar 

  27. Reymond, P., F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297:H208–H222, 2009.

    Article  CAS  PubMed  Google Scholar 

  28. Sagawa, K. The end-systolic pressure–volume relation of the ventricle: definition, modifications and clinical use. Circulation 63:1223–1227, 1981.

    Article  CAS  PubMed  Google Scholar 

  29. Sagawa, K., H. Suga, A. A. Shoukas, and K. M. Bakalar. End-systolic pressure/volume ratio: a new index of ventricular contractility. Am. J. Cardiol. 40:748–753, 1977.

    Article  CAS  PubMed  Google Scholar 

  30. Senzaki, H., C. H. Chen, and D. A. Kass. Single-beat estimation of end-systolic pressure–volume relation in humans. A new method with the potential for noninvasive application. Circulation 94:2497–2506, 1996.

    Article  CAS  PubMed  Google Scholar 

  31. Shishido, T., K. Hayashi, K. Shigemi, T. Sato, M. Sugimachi, and K. Sunagawa. Single-beat estimation of end-systolic elastance using bilinearly approximated time-varying elastance curve. Circulation 102:1983–1989, 2000.

    Article  CAS  PubMed  Google Scholar 

  32. Starling, M. R., R. A. Walsh, L. J. Dell’Italia, G. B. Mancini, J. C. Lasher, and J. L. Lancaster. The relationship of various measures of end-systole to left ventricular maximum time-varying elastance in man. Circulation 76:32–43, 1987.

    Article  CAS  PubMed  Google Scholar 

  33. Stergiopulos, N., J. J. Meister, and N. Westerhof. Determinants of stroke volume and systolic and diastolic aortic pressure. Am. J. Physiol. 270:H2050–H2059, 1996.

    CAS  PubMed  Google Scholar 

  34. Suga, H., and K. Sagawa. Instantaneous pressure–volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35:117–126, 1974.

    Article  CAS  PubMed  Google Scholar 

  35. Suga, H., K. Sagawa, and A. A. Shoukas. Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32:314–322, 1973.

    Article  CAS  PubMed  Google Scholar 

  36. Sunagawa, K., W. L. Maughan, and K. Sagawa. Effect of regional ischemia on the left ventricular end-systolic pressure–volume relationship of isolated canine hearts. Circ. Res. 52:170–178, 1983.

    Article  CAS  PubMed  Google Scholar 

  37. Swamy, G., J. Kuiper, M. S. R. Gudur, N. B. Olivier, and R. Mukkamala. Continuous left ventricular ejection fraction monitoring by aortic pressure waveform analysis. Ann. Biomed. Eng. 37:1055–1068, 2009.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stamatia Z. Pagoulatou.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagoulatou, S.Z., Stergiopulos, N. Estimating Left Ventricular Elastance from Aortic Flow Waveform, Ventricular Ejection Fraction, and Brachial Pressure: An In Silico Study. Ann Biomed Eng 46, 1722–1735 (2018). https://doi.org/10.1007/s10439-018-2072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2072-0

Keywords

Navigation