Skip to main content

Advertisement

Log in

Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In recent years, biodegradable metallic materials have played an important role in biomedical applications. However, as typical for the metal materials, their structure, general properties, preparation technology and biocompatibility are hard to change. Furthermore, biodegradable metals are susceptible to excessive degradation and subsequent disruption of their mechanical integrity; this phenomenon limits the utility of these biomaterials. Therefore, the use of degradable metals, as the base material to prepare metal matrix composite materials, it is an excellent alternative to solve the problems above described. Biodegradable metals can thus be successfully combined with other materials to form biodegradable metallic matrix composites for biomedical applications and functions. The present article describes the processing methods currently available to design biodegradable metal matrix composites for biomedical applications and provides an overview of the current existing biodegradable metal systems. At the end, the manuscript presents and discusses the challenges and future research directions for development of biodegradable metallic matrix composites for biomedical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Aghion, E., T. Yered, Y. Perez, and Y. Gueta. The prospects of carrying and releasing drugs via biodegradable magnesium foam. Adv. Eng. Mater. 12(8):B374–B379, 2010.

    Article  CAS  Google Scholar 

  2. Agrawal, D. K. Microwave processing of ceramics. Curr. Opin. Solid State Mater. Sci. 3:480–485, 1998.

    Article  CAS  Google Scholar 

  3. Bafti, H., and A. Habibolahzadeh. Production of aluminum foam by spherical carbamide space holder technique-processing parameters. Mater. Des. 31(9):4122–4129, 2010.

    Article  CAS  Google Scholar 

  4. Brown, A., S. Zaky, H. Ray Jr, and C. Sfeir. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater. 11:543–553, 2015.

    Article  CAS  PubMed  Google Scholar 

  5. Butt, M. S., J. Bai, X. Wan, C. Chu, F. Xue, H. Ding, and G. Zhou. Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding. Mater. Sci. Eng. C 70:141–147, 2017.

    Article  CAS  Google Scholar 

  6. Campo, R., B. Savoini, A. Munoz, M. A. Monge, and G. Garce′s. Mechanical properties and corrosion behavior of Mg–HAP composites. J. Mech. Behav. Biomed. Mater. 39:238–246, 2014.

    Article  CAS  PubMed  Google Scholar 

  7. Capek, J., and D. Vojtěch. Properties of porous magnesium prepared by powder metallurgy. Mater. Sci. Eng. C 33:564–569, 2013.

    Article  CAS  Google Scholar 

  8. Capek, J., D. Vojtěch, and A. Oborná. Microstructural and mechanical properties of biodegradable iron foam prepared by powder metallurgy. Mater. Des. 83:468–482, 2015.

    Article  CAS  Google Scholar 

  9. Champion, E. Sintering of calcium phosphate bioceramics. Acta Biomater. 9:5855–5875, 2013.

    Article  CAS  PubMed  Google Scholar 

  10. Chou, D. T., D. Wells, D. Hong, B. Lee, H. Kuhn, and P. N. Kumta. Novel processing of iron–manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater. 9:8593–8603, 2013.

    Article  CAS  PubMed  Google Scholar 

  11. Clemow, J. T., A. M. Weinstein, J. J. Klawitter, J. Koeneman, and J. Anderson. Interface mechanics of porous titanium implants. J. Biomed. Mater. Res. 15:73–82, 1981.

    Article  CAS  PubMed  Google Scholar 

  12. Degarmo, E. P., J. T. Black, and R. A. Kohser. Materials and Processes in Manufacturing (9th ed.). New York: Wiley, 2003.

    Google Scholar 

  13. Farraro, K. F., K. E. Kim, L. Y. Woo, J. R. Flowers, and M. B. Mccullough. Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J. Biomech. 47:1979–1986, 2014.

    Article  PubMed  Google Scholar 

  14. Fierz, F. C., F. Beckmann, M. Huser, S. H. Irsen, B. Leukers, F. Witte, O. Degistirici, A. Andronache, M. Thie, and B. Mueller. The morphology of anisotropic 3D-printed hydroxyapatite scaffolds. Biomaterials 29:3799–3806, 2008.

    Article  CAS  PubMed  Google Scholar 

  15. Giesekel, M., C. Noelkel, S. Kaierlel, V. Weslingl, and H. Haferkarnp. Selective laser melting of magnesium and magnesium alloys. Magnes. Technol. 2013. https://doi.org/10.1007/978-3-319-48150-0_11.

    Article  Google Scholar 

  16. Grandfield, K., A. Palmquist, S. Gonçalves, A. Taylor, M. Taylor, L. Emanuelsson, P. Thomsen, and H. Engqvist. Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction. J. Mater. Sci. Mater. Med. 22:899–906, 2011.

    Article  CAS  PubMed  Google Scholar 

  17. Gu, X. N., X. Wang, N. Li, L. Li, Y. F. Zheng, and X. Miao. Microstructure and characteristics of the metal–ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration. J. Biomed. Mater. Res. Part B 99B:127–134, 2011.

    Article  CAS  Google Scholar 

  18. Gu, X., W. Zhou, Y. F. Zheng, L. Dong, Y. Xi, and D. Chai. Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Mater. Sci. Eng. C 30:827–832, 2010.

    Article  CAS  Google Scholar 

  19. Hao, G. L., F. S. Han, and W. D. Li. Processing and mechanical properties of magnesium foams. J. Porous Mater. 16(3):251–256, 2009.

    Article  CAS  Google Scholar 

  20. Hegde, S., and A. Hsiao. Improving the Fontan: Pre-surgical planning using four dimensional (4D) flow, bio-mechanical modeling and three dimensional (3D) printing. Progr. Pediatr. Cardiol. 43:57–60, 2016.

    Article  Google Scholar 

  21. Heissler, E., F. S. Fischer, S. Boiouri, T. Lehrnann, W. Mathar, A. Gebhardt, W. Lanksch, and J. Bler. Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. Int. J. Oral Maxillofacc. Surg. 27:334–338, 1998.

    Article  CAS  Google Scholar 

  22. Hermawan, H., D. Dubé, and D. Mantovani. Developments in metallic biodegradable stents. Acta Biomater. 6:1693–1697, 2010.

    Article  CAS  PubMed  Google Scholar 

  23. Hong, D., D. T. Chou, O. I. Velikokhatnyi, A. Roy, B. Lee, I. Swink, I. Issaev, H. A. Kuhn, and P. N. Kumta. Binder-jetting 3D printing and alloy development of new biodegradable Fe–Mn–Ca/Mg alloys. Acta Biomater. 45:375–386, 2016.

    Article  CAS  PubMed  Google Scholar 

  24. Huan, Z., S. Leeflang, J. Zhou, W. Zhai, J. Chang, and J. Duszczyk. In vitro degradation behavior and bioactivity of magnesium-Bioglass® composites for orthopedic applications. J. Biomed. Mater. Res. Part B 100B:437–446, 2012.

    Article  CAS  Google Scholar 

  25. Jha, N., D. P. Mondal, J. Dutta Majumdar, A. Badkul, A. K. Jha, and A. K. Khare. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route. Mater. Des. 47:810–819, 2013.

    Article  CAS  Google Scholar 

  26. Jiang, G., and G. He. A new approach to the fabrication of porous magnesium with well-controlled 3D pore structure for orthopedic applications. Mater. Sci. Eng. C 43:317–320, 2014.

    Article  CAS  Google Scholar 

  27. Jung, H. D., H. S. Park, M. H. Kang, S. M. Lee, H. E. Kim, Y. Estrin, and Y. H. Koh. Polyetheretherketone/magnesium with hydroxyapatite for enhanced in vitro bio-corrosion resistance and biocompatibility. Mater. Lett. 116:20–22, 2014.

    Article  CAS  Google Scholar 

  28. Kalpakjian, S., and S. Schmid. Manufacturing Engineering and Technology (4th ed.). Upper Saddle River: Prentice Hall, 2001.

    Google Scholar 

  29. Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491, 2005.

    Article  CAS  Google Scholar 

  30. Khalajabada, S. Z., N. Ahmad, S. Izman, A. Bin Haji Abu, W. Haider, and M. R. Abdul Kadir. In vitro biodegradation, electrochemical corrosion evaluations and mechanical properties of an Mg/HA/TiO2 nanocomposite for biomedical applications. J. Alloy Compd. 696:768–781, 2017.

    Article  CAS  Google Scholar 

  31. Khalajabada, S. Z., M. R. A. Kadir, S. Izman, H. R. Bakhsheshi-Rad, and S. Farahany. Effect of mechanical alloying on the phase evolution, microstructure and bio-corrosion properties of a Mg/HA/TiO2/MgO nanocomposite. Ceram. Int. 40:16743–16759, 2014.

    Article  CAS  Google Scholar 

  32. Khalajabadi, S. Z., M. R. Abdul Kadir, S. Izman, and M. Marvibaigi. The effect of MgO on the biodegradation, physical properties and biocompatibility of a Mg/HA/MgO nanocomposite manufactured by powder metallurgy method. J. Alloy Compd. 655:266–280, 2016.

    Article  CAS  Google Scholar 

  33. Khalajabadi, S. Z., N. Ahmad, A. Yahya, M. A. M. Yajid, A. Samavati, S. Asadi, A. Arafat, and M. R. Abdul Kadir. The role of titania on the microstructure, biocorrosion and mechanical properties of Mg/HA-based nanocomposites for potential application in bone repair. Ceram. Int. 42:18223–18237, 2016.

    Article  CAS  Google Scholar 

  34. Kim, D., S. Shim, and S. Lim. Characteristics of Mg–xHA composites fabricated by cold isostatic pressing process. Sci. Adv. Mater. 6(9):2020–2023, 2014.

    Article  CAS  Google Scholar 

  35. Kirklanda, N. T., I. Kolbeinssona, T. Woodfieldac, G. J. Diasb, and M. P. Staigera. Synthesis and properties of topologically ordered porous magnesium. Mater. Sci. Eng. B 176:1666–1672, 2011.

    Article  CAS  Google Scholar 

  36. Korner, C., M. Hirschmann, V. Brautigam, and R. F. Singer. Endogenous particle stabilization during magnesium integral foam production. Adv. Eng. Mater. 6:385–390, 2004.

    Article  CAS  Google Scholar 

  37. Kutty, M. G., S. B. Bhaduri, H. Zhou, and A. Yaghoubi. In situ measurement of shrinkage and temperature profile in microwave-and conventionally-sintered hydroxyapatite bioceramic. Mater. Lett. 161:375–378, 2015.

    Article  CAS  Google Scholar 

  38. Lefebvre, L. P., J. Banhart, and D. C. Dunand. Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10:775–787, 2008.

    Article  CAS  Google Scholar 

  39. Lei, T., W. Tang, S. Cai, F. Feng, and N. F. Li. On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction. Corros. Sci. 54:270–277, 2012.

    Article  CAS  Google Scholar 

  40. Lewis, G. Properties of open-cell porous metals and alloys for orthopaedic applications. J. Mater. Sci. Mater. Med. 24(10):2293–2325, 2013.

    Article  CAS  PubMed  Google Scholar 

  41. Li, X., C. Guo, X. Liu, L. Liu, J. Bai, F. Xue, P. Lin, and C. Chu. Impact behaviors of poly-lacticacid based biocomposite reinforced with unidirectional high-strength magnesium alloy wires. Prog. Nat. Sci. 24:472–478, 2014.

    Article  CAS  Google Scholar 

  42. Li, X., X. Liu, S. Wu, K. W. K. Yeung, Y. Zheng, and P. K. Chu. Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface. Acta Biomater. 45:2–30, 2016.

    Article  CAS  PubMed  Google Scholar 

  43. Li, H., T. Wu, Y. Zheng, H. El-Hamshary, S. S. Al-Deyabc, and X. Mo. Fabrication and characterization of Mg/P(LLA-CL)-blended nanofiber scaffold. J. Biomater. Sci. Polym. Ed. 25(10):1013–1027, 2014.

    Article  CAS  PubMed  Google Scholar 

  44. Li, N., and Y. F. Zheng. Novel magnesium alloys developed for biomedical application: a review. J. Mater. Sci. Technol. 29(6):489–502, 2013.

    Article  CAS  Google Scholar 

  45. Li, H., Y. F. Zheng, and L. Qin. Progress of biodegradable metals. Prog. Nat. Sci. 24:414–422, 2014.

    Article  CAS  Google Scholar 

  46. Lietaert, K., L. Weber, J. V. Humbeeck, A. Mortensen, and J. Luyten. Open cellular magnesium alloys for biodegradable orthopaedic implants. J. Magnes. Alloys 1:303–311, 2013.

    Article  CAS  Google Scholar 

  47. Lim, P. N., R. N. Lam, Y. F. Zheng, and E. S. Thia. Magnesium–calcium/hydroxyapatite (Mg–Ca/HA) composites with enhanced bone differentiation properties for orthopedic applications. Mater. Lett. 172:193–197, 2016.

    Article  CAS  Google Scholar 

  48. Liu, Y., Y. X. Li, J. Wan, H. W. Zhang, Y. Li, X. Li, J. Wang, and W. Wang. Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification. Mater. Sci. Eng. C 402:47–54, 2005.

    Article  CAS  Google Scholar 

  49. Liu, Y., D. Liu, and L. Liu. Corrosion properties of composite materials HA (beta-TCP)/Mg–Zn–Ca. Rare Metal Mater. Eng. 43(1):205–209, 2014.

    Google Scholar 

  50. Liu, D., Y. Zuo, W. Meng, M. Chen, and Z. Fan. Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology. Mater. Sci. Eng. C 32:1253–1258, 2012.

    Article  CAS  Google Scholar 

  51. Ma, H., C. Jiang, D. Zhai, Y. Luo, Y. Chen, F. Lv, Z. Yi, Y. Deng, J. Wang, J. Chang, and C. Wu. A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv. Funct. Mater. 26:1197–1208, 2016.

    Article  CAS  Google Scholar 

  52. Manakari, V., G. Parande, and M. Gupta. Selective laser melting of magnesium and magnesium alloy powders: a review. Metals 7(1):2–10, 2016.

    Article  CAS  Google Scholar 

  53. Manonukul, A., N. Muenya, F. Leaux, and S. Amaranan. Effects of replacing metal powder with powder space holder on metal foam produced by metal injection moulding. J. Mater. Process. Technol. 210(3):529–535, 2010.

    Article  CAS  Google Scholar 

  54. Nagels, J., S. Mariëlle, and P. M. Rozing. Stress shielding and bone resorption in shoulder arthroplasty. J. Shoulder Elbow Surg. 12(1):35–39, 2003.

    Article  PubMed  Google Scholar 

  55. Nakai, M., M. Niinomi, and D. Ishii. Mechanical and biodegradable properties of porous titanium filled with poly-l-lactic acid by modified in situ polymerization technique. J. Mech. Behav. Biomed. Mater. 4(7):1206–1218, 2011.

    Article  CAS  PubMed  Google Scholar 

  56. Niinomi, M., M. Nakai, and J. Hieda. Development of new metallic alloys for biomedical applications. Acta Biomater. 8:3888–3903, 2012.

    Article  CAS  PubMed  Google Scholar 

  57. Ogawa, Y., D. Ando, and Y. Sutou. A lightweight shape-memory magnesium alloy. Science 353:368–371, 2016.

    Article  CAS  PubMed  Google Scholar 

  58. Onoki, T., S. Yamamoto, H. Onodera, and A. Nakahira. New technique for bonding hydroxyapatite ceramics and magnesium alloy by hydrothermal hot-pressing method. Mater. Sci. Eng. C 31:499–502, 2011.

    Article  CAS  Google Scholar 

  59. Renger, K., and H. Kaufmann. Vacuum foaming of Mg slurries. Adv. Eng. Mater. 7:117–123, 2005.

    Article  CAS  Google Scholar 

  60. Sachs, E., E. Wylonis, S. Allen, M. Cima, and H. Guo. Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. Polym. Eng. Sci. 40:1232–1247, 2000.

    Article  CAS  Google Scholar 

  61. Sartori, M., S. Pagani, A. Ferrari, V. Costa, V. Carina, E. Figallo, M. C. Maltarello, L. Martini, M. Fini, and G. Giavaresi. A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations. Mater. Sci. Eng. C 70:101–111, 2017.

    Article  CAS  Google Scholar 

  62. Scolozzi, P., A. Martinez, and B. Jaques. Complex orbito-fronto-temporal reconstruction using computer-designed PEEK implant. J. Craniofacc. Surg. 18:224–228, 2007.

    Article  Google Scholar 

  63. Shadanbaz, S., and G. J. Dias. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater. 8:20–30, 2012.

    Article  CAS  PubMed  Google Scholar 

  64. Son, D., J. Lee, D. J. Lee, et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano. 9:5937–5942, 2015.

    Article  CAS  PubMed  Google Scholar 

  65. Staiger, M. P., A. M. Pietak, J. Huadmai, and G. Dias. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734, 2006.

    Article  CAS  PubMed  Google Scholar 

  66. Tie, D., F. Feyerabend, and W. D. Mueller. Antibacterial biodegradable Mg–Ag alloys. Eur. Cell. Mater. 25:284–295, 2013.

    Article  CAS  PubMed  Google Scholar 

  67. Ulery, B. D., L. S. Nair, and C. T. Laurencin. Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B: Polym. Phys. 49:832–839, 2011.

    Article  CAS  Google Scholar 

  68. Wan, Y., T. Cui, W. Li, C. Li, J. Xiao, Y. Zhu, D. Ji, G. Xiong, and H. Luo. Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route. Mater. Des. 99:521–527, 2016.

    Article  CAS  Google Scholar 

  69. Wang, X., L. H. Dong, X. L. Ma, and Y. F. Zheng. Microstructure, mechanical property and corrosion behaviors of interpenetrating C/Mg–Zn–Mn composite fabricated by suction casting. Mater. Sci. Eng. C 33:618–625, 2013.

    Article  CAS  Google Scholar 

  70. Wang, Z., N. Li, R. Li, Y. Li, and L. Ruan. Biodegradable intestinal stents: a review. Prog. Nat. Sci. 24:423–432, 2014.

    Article  CAS  Google Scholar 

  71. Wen, C. E., M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina. Processing of biocompatible porous Ti and Mg. Scr. Mater. 45:1147–1153, 2001.

    Article  CAS  Google Scholar 

  72. Wen, C. E., Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, and M. Mabuchi. Mater. Lett. 58:357–360, 2004.

    Article  CAS  Google Scholar 

  73. Witte, F., H. Ulrich, M. Rudert, and E. Willbold. Biodegradable magnesium scaffolds. Part 1: appropriate inflammatory response. J. Biomed. Mater. Res. Part A 81(3):748–756, 2007.

    Article  CAS  Google Scholar 

  74. Wu, Y. H., N. Li, Y. Cheng, Y. F. Zheng, and Y. Han. In vitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA composite. J. Mater. Sci. Technol. 29(6):545–550, 2013.

    Article  CAS  Google Scholar 

  75. Xiang, C., Y. Zhang, Z. Li, H. Zhang, Y. Huang, and H. Tang. Preparation and compressive behavior of porous titanium prepared by space holder sintering process. Proc. Eng. 27:768–774, 2012.

    Article  CAS  Google Scholar 

  76. Xie, Z., M. Tane, S. Hyun, Y. Okuda, and H. Nakajima. Vibration-damping capacity of lotus-type porous magnesium Mater. Sci. Eng. A 417:129–133, 2006.

    Article  CAS  Google Scholar 

  77. Xiong, G., Y. Nie, D. Ji, J. Li, C. Li, W. Li, Y. Zhu, H. Luo, and Y. Wan. Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Curr. Appl. Phys. 16:830–836, 2016.

    Article  Google Scholar 

  78. Yamada, Y., K. Shimojima, Y. Sakaguchi, M. Mabuchim, M. Nakamura, and T. Asahina. Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05 g/cm3. J. Mater. Sci. Lett. 18:1477–1480, 1999.

    Article  CAS  Google Scholar 

  79. Yang, J. X., F. Z. Cui, and I. S. Lee. Surface modifications of magnesium alloys for biomedical applications. Ann. Biomed. Eng. 39(7):1857–1871, 2011.

    Article  PubMed  Google Scholar 

  80. Yang, K., C. Zhou, H. Fan, Y. Fan, Q. Jiang, P. Song, H. Fan, Y. Chen, and X. Zhang. Bio-functional design, application and trends in metallic biomaterials. Int. J. Mol. Sci. 19(1):24–45, 2018.

    Article  CAS  Google Scholar 

  81. Yu, K., L. Chen, J. Zhao, S. Li, Y. Dai, Q. Huang, and Z. Yu. In vitro corrosion behavior and in vivo biodegradation of biomedical α-Ca3(PO4)2/Mg–Zn composites. Acta Biomater. 8:2845–2855, 2012.

    Article  CAS  PubMed  Google Scholar 

  82. Yu, K., L. Chen, J. Zhao, R. Wang, Y. Dai, and Q. Huang. In vivo biocompatibility and biodegradation of a Mg–15% Ca3(PO4)2 composite as an implant material. Mater. Lett. 98:22–25, 2013.

    Article  CAS  Google Scholar 

  83. Yu, M., C. George, Y. Cao, D. Wootton, and J. Zhou. Microstructure, corrosion, and mechanical properties of compression-molded zinc-nanodiamond composites. J. Mater. Sci. 49:3629–3641, 2014.

    Article  CAS  Google Scholar 

  84. Yun, Y., Z. Dong, N. Lee, Y. Liu, D. Xue, X. Guo, J. Kuhlmann, A. Doepke, H. B. Halsall, W. Heineman, S. Sundaramurthy, M. J. Schulz, Z. Yin, V. Shanov, D. Hurd, P. Nagy, W. Li, and C. Fox. Revolutionizing biodegradable metals. Mater. Today 12(10):22–32, 2009.

    Article  CAS  Google Scholar 

  85. Yusop, A. H., A. A. Bakir, N. A. Shaharom, M. R. A. Kadir, and H. Hermawan. Porous biodegradable metals for hard tissue scaffolds: a review. Int. J. Biomater. 2012(4):641430–641436, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zahrani, M. M., M. Meratian, and Y. Kabiri. Innovative processing of lotus-type porous magnesium through thermal decomposition of wood. Mater. Lett. 85:14–17, 2012.

    Article  CAS  Google Scholar 

  87. Zardiackas, L. D., L. D. Dillon, D. W. Mitchell, L. A. Nunnery, and R. Poggie. Structure, metallurgy, and mechanical properties of a porous tantalum foam. J. Biomed. Mater. Res. 58:180–187, 2001.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, L. C., and H. Attar. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv. Eng. Mater. 18:463–475, 2016.

    Article  CAS  Google Scholar 

  89. Zhang, L. C., H. Attar, M. Calin, and J. Eckert. Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications. Mater. Technol. 31:66–76, 2016.

    Article  CAS  Google Scholar 

  90. Zhang, Q., and P. Cao. Degradable porous Fe-35 wt% Mn produced via powder sintering from NH4HCO3 porogen. Mater. Chem. Phys. 163:394–401, 2015.

    Article  CAS  Google Scholar 

  91. Zhang, X., X. W. Li, J. G. Li, and X. D. Sun. Preparation and mechanical properties of a novel biomedical magnesium-based scaffold. Key Eng. Mater. 544:276–280, 2013.

    Article  CAS  Google Scholar 

  92. Zhang, X., X. W. Li, J. G. Li, and X. D. Sun. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering. Mater. Sci. Eng. C 42:362–367, 2014.

    Article  CAS  Google Scholar 

  93. Zhen, Z., T. F. Xi, and Y. F. Zheng. A review on in vitro corrosion performance test of biodegradable metallic materials. Trans. Nonferrous Met. Soc. China 23:2283–2293, 2013.

    Article  CAS  Google Scholar 

  94. Zheng, Y. F., X. N. Gu, and F. Witte. Biodegradable metals. Mater. Sci. Eng. R 77:1–34, 2014.

    Article  Google Scholar 

  95. Zheng, Y. F., and Y. H. Wu. Revolutionizing metallic biomaterials. Acta Metall. Sin. 53(3):257–297, 2017.

    Article  CAS  Google Scholar 

  96. Zhuang, H. Y., Y. Han, and A. L. Feng. Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Mater. Sci. Eng. C 28:1462–1466, 2008.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 2017 Premium Funding Project for Academic Human Resources Development at Beijing Union University (Grant No. BPHR2017DZ09), the 2017 Quota-Oriented Project for Improvement of Scientific Research at Beijing Union University (Grant No. KYDE40201708), and the National Institute of Health of the United States (Grant No. R01 AR068073, R01 CA180279, and P41 EB023833).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxin Yang.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Guo, J.L., Mikos, A.G. et al. Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications. Ann Biomed Eng 46, 1229–1240 (2018). https://doi.org/10.1007/s10439-018-2058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2058-y

Keywords

Navigation