Skip to main content
Log in

Towards Alternative Approaches for Coupling of a Soft Robotic Sleeve to the Heart

  • Medical Robotics
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Efficient coupling of soft robotic cardiac assist devices to the external surface of the heart is crucial to augment cardiac function and represents a hurdle to translation of this technology. In this work, we compare various fixation strategies for local and global coupling of a direct cardiac compression sleeve to the heart. For basal fixation, we find that a sutured Velcro band adheres the strongest to the epicardium. Next, we demonstrate that a mesh-based sleeve coupled to the myocardium improves function in an acute porcine heart failure model. Then, we analyze the biological integration of global interface material candidates (medical mesh and silicone) in a healthy and infarcted murine model and show that a mesh interface yields superior mechanical coupling via pull-off force, histology, and microcomputed tomography. These results can inform the design of a therapeutic approach where a mesh-based soft robotic DCC is implanted, allowed to biologically integrate with the epicardium, and actuated for active assistance at a later timepoint. This strategy may result in more efficient coupling of extracardiac sleeves to heart tissue, and lead to increased augmentation of heart function in end-stage heart failure patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alferness, C. U.S. Pat. No. 5,702,343. Cardiac reinforcement device. 1996.

  2. Anstadt, M., R. Bartlett, J. Malone, G. Brown, S. Martin, D. Nolan, K. Oberheu, and G. L. Anstadt. Direct mechanical ventricular actuation for cardiac arrest in humans. A clinical feasibility trial. Chest 100:86–92, 1991.

    Article  CAS  PubMed  Google Scholar 

  3. Blom, A. S., R. Mukherjee, J. J. Pilla, A. S. Lowry, W. M. Yarbrough, J. T. Mingoia, J. W. Hendrick, R. E. Stroud, J. E. McLean, J. Affuso, R. C. Gorman, J. H. Gorman, M. A. Acker, and F. G. Spinale. Cardiac support device modifies left ventricular geometry and myocardial structure after myocardial infarction. Circulation 112:1274–1283, 2005.

    Article  PubMed  Google Scholar 

  4. Chaudhry, P. A., P. V. Anagnostopouls, T. Mishima, G. Suzuki, H. Nair, H. Morita, V. G. Sharov, C. Alferness, and H. N. Sabbah. Acute ventricular reduction with the acorn cardiac support device: effect on progressive left ventricular dysfunction and dilation in dogs with chronic heart failure. J. Card. Surg. 16:118–126, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Costanzo, M. R., S. Maybaum, A. Bank, I. Anand, B. Rayburn, R. Ivanhoe, and W. Abraham. Ventricular elastic support therapy (VEST) in stage C heart failure-analysis from the PEERLESS-HF study. J. Card. Fail. 16:912, 2010.

    Article  Google Scholar 

  6. Fujimoto, K. L., K. Tobita, W. D. Merryman, J. Guan, N. Momoi, D. B. Stolz, M. S. Sacks, B. B. Keller, and W. R. Wagner. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J. Am. Coll. Cardiol. 49:2292–2300, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghanta, R. K., L. S. Lee, R. Umakanthan, R. G. Laurence, J. A. Fox, R. M. Bolman, L. H. Cohn, and F. Y. Chen. Real-time adjustment of ventricular restraint therapy in heart failure. Eur. J. Cardio-thorac. Surg. 34:1136–1140, 2008.

    Article  Google Scholar 

  8. Horvath, M. A., I. Wamala, E. Rytkin, E. Doyle, C. J. Payne, T. Thalhofer, I. Berra, A. Solovyeva, M. Saeed, S. Hendren, E. T. Roche, P. J. del Nido, C. J. Walsh, and N. V. Vasilyev. An intracardiac soft robotic device for augmentation of blood ejection from the failing right ventricle. Ann. Biomed. Eng. 45:2222–2233, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kung, R. T., and M. Rosenberg. Heart booster: a pericardial support device. Ann. Thorac. Surg. 68:764–767, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Kwon, M. H., M. Cevasco, J. D. Schmitto, and F. Y. Chen. Ventricular restraint therapy for heart failure: a review, summary of state of the art, and future directions. J. Thorac. Cardiovasc. Surg. 144:771–777.e1, 2012.

    Article  PubMed  Google Scholar 

  11. Lee, L. S., R. K. Ghanta, S. A. Mokashi, O. Coelho-Filho, R. Y. Kwong, M. Kwon, J. Guan, R. Liao, and F. Y. Chen. Optimized ventricular restraint therapy: adjustable restraint is superior to standard restraint in an ovine model of ischemic cardiomyopathy. J. Thorac. Cardiovasc. Surg. 145:824–831, 2013.

    Article  PubMed  Google Scholar 

  12. Mac Murray, B. C., C. C. Futran, J. Lee, K. W. O‘Brien, A. A. Amiri Moghadam, B. Mosadegh, M. N. Silberstein, J. K. Min, and R. F. Shepherd. Compliant buckled foam actuators and application in patient-specific direct cardiac compression. Soft Robot. 5:99–108, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mann, D. L., S. H. Kubo, H. N. Sabbah, R. C. Starling, M. Jessup, J. K. Oh, and M. A. Acker. Beneficial effects of the CorCap cardiac support device: five-year results from the Acorn Trial. J. Thorac. Cardiovasc. Surg. 143:1036–1042, 2012.

    Article  PubMed  Google Scholar 

  14. Meister, M., and S. M. Wildhirt. Cardiac assistance device and method for the control thereof. Patent: US8944987B2. 2015.

  15. Mokashi, S. A., L. S. Lee, J. D. Schmitto, R. K. Ghanta, S. McGurk, R. G. Laurence, R. M. Bolman, L. H. Cohn, and F. Y. Chen. Restraint to the left ventricle alone is superior to standard restraint. J. Thorac. Cardiovasc. Surg. 146:192–197, 2013.

    Article  PubMed  Google Scholar 

  16. Moreno, M. R., S. Biswas, L. D. Harrison, G. Pernelle, M. W. Miller, T. W. Fossum, D. A. Nelson, and J. C. Criscione. Development of a non-blood contacting cardiac assist and support device: an in vivo proof of concept study. J. Med. Device 5:41007-1–41007-9, 2011.

    Google Scholar 

  17. Murphy, C. M., M. G. Haugh, and F. J. O’Brien. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466, 2010.

    Article  CAS  Google Scholar 

  18. Murphy, C. M., and F. J. O’Brien. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes. Migr. 4:377–381, 2010.

    Article  Google Scholar 

  19. O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14:88–95, 2011.

    Article  CAS  Google Scholar 

  20. O’Brien, F. J., B. A. Harley, I. V. Yannas, and L. J. Gibson. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26:433–441, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. O’Neill, C. T., N. S. Phipps, L. Cappello, S. Paganoni, and C. J. Walsh. A soft wearable robot for the shoulder: design, characterization, and preliminary testing, 2017.

  22. Park, J., S. Choi, A. H. Janardhan, S.-Y. Lee, S. Raut, J. Soares, K. Shin, S. Yang, C. Lee, and K.-W. Kang. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 8:344ra86, 2016.

    Article  CAS  PubMed  Google Scholar 

  23. Payne, C. J., I. Wamala, C. Abah, T. Thalhofer, M. Saeed, D. Bautista-Salinas, M. A. Horvath, N. V. Vasilyev, E. T. Roche, F. A. Pigula, and C. J. Walsh. An implantable extracardiac soft robotic device for the failing heart: mechanical coupling and synchronization. Soft Robot. 2017. https://doi.org/10.1089/soro.2016.0076.

    Article  PubMed  Google Scholar 

  24. Payne, C. J., I. Wamala, D. Bautista-Salinas, M. Saeed, D. Van Story, T. Thalhofer, M. A. Horvath, C. Abah, J. Pedro, and C. J. Walsh. Soft robotic ventricular assist device with septal bracing for therapy of heart failure. Sci. Robot. 2:6736, 2017.

    Article  Google Scholar 

  25. Polygerinos, P., N. Correll, S. A. Morin, B. Mosadegh, C. D. Onal, K. Petersen, M. Cianchetti, M. T. Tolley, and R. F. Shepherd. Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human–robot interaction. Adv. Eng. Mater. 2017. https://doi.org/10.1002/adem.201700016.

    Article  Google Scholar 

  26. Roche, E. T., M. A. Horvath, A. Alazmani, K. C. Galloway, N. V. Vasilyev, D. J. Mooney, F. A. Pigula, and C. J. Walsh. Design and fabrication of a soft robotic direct cardiac assist device. 2015.

  27. Roche, E. T., M. A. Horvath, I. Wamala, S. E. Song, W. Whyte, Z. Machaidze, N. V. Vasilyev, D. J. Mooney, F. A. Pigula, and C. J. Walsh. Soft robotic sleeve restores heart function. Sci. Transl. Med. 9:3925, 2017.

    Article  CAS  Google Scholar 

  28. Sabbah, H. N., V. G. Sharov, P. A. Chaudhry, G. Suzuki, A. Todor, and H. Morita. Chronic therapy with the acorn cardiac support device in dogs with chronic heart failure: three and six months hemodynamic, histologic and ultrastructural findings. J. Heart Lung Transpl. 20:189, 2001.

    Article  Google Scholar 

  29. Sasaki, D., T. Noritsugu, and M. Takaiwa. Development of active support splint driven by pneumatic soft actuator (ASSIST). 2005.

  30. Shahinpoor, M., and K. J. Kim. Design, development and testing of a multi-fingered heart compression/assist device equipped with IPMC artificial muscles. Int. Soc. Opt. Photon. 4329:411–420, 2001.

    CAS  Google Scholar 

  31. Smith, E. M. Cardiac massage apparatus. 1962.

  32. Trumble, D. R., C. S. Park, and J. A. Magovern. Copulsation balloon for right ventricular assistance: preliminary trials. Circulation 99:2815–2818, 1999.

    Article  CAS  PubMed  Google Scholar 

  33. Wenk, J. F., L. Ge, Z. Zhang, D. Mojsejenko, D. D. Potter, E. E. Tseng, J. M. Guccione, and M. B. Ratcliffe. Biventricular finite element modeling of the acorn CorCap cardiac support device on a failing heart. Ann. Thorac. Surg. 95:2022–2027, 2018.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ronghli Liao Ph.D., Sudeshna Fisch Ph.D., and Souen Ngoy from the Brigham and Women’s Hospital Rodent Cardiovascular Physiology Core for their technical support; the staff at ARCH, Boston Children’s Hospital for help with porcine studies, James Weaver Ph.D. from the Wyss Institute at Harvard University for imaging assistance and Robert Padera M.D. Ph.D. for histological assessment. ETR acknowledges funding from the Massachusetts Institute of Technology (Institute for Medical Engineering Science and the Department of Mechanical Engineering), and the Wyss Institute for Biologically Inspired Engineering at Harvard University. WW and GD acknowledge the Irish Research Council (GOIPG/2017/927) and Science Foundation Ireland (SFI/12/RC/2278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen T. Roche.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horvath, M.A., Varela, C.E., Dolan, E.B. et al. Towards Alternative Approaches for Coupling of a Soft Robotic Sleeve to the Heart. Ann Biomed Eng 46, 1534–1547 (2018). https://doi.org/10.1007/s10439-018-2046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2046-2

Keywords

Navigation