Skip to main content
Log in

Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots

  • Medical Robotics
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Dexterity of robots is highly required when it comes to integration for medical applications. Major efforts have been conducted to increase the dexterity at the distal parts of medical robots. This paper reports on developments toward integrating biocompatible conducting polymers (CP) into inherently dexterous concentric tube robot paradigm. In the form of tri-layer thin structures, CP micro-actuators produce high strains while requiring less than 1 V for actuation. Fabrication, characterization, and first integrations of such micro-actuators are presented. The integration is validated in a preliminary telescopic soft robot prototype with qualitative and quantitative performance assessment of accurate position control for trajectory tracking scenarios. Further, CP micro-actuators are integrated to a laser steering system in a closed-loop control scheme with displacements up to 5 mm. Our first developments aim toward intracorporeal medical robotics, with miniaturized actuators to be embedded into continuum robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Amanov, E., J. Granna, J. Burgner-Kahrs. Toward improving path following motion: hybrid continuum robot design. In: IEEE International Conference on Robotics and Automation, 2017, pp. 4666–4672.

  2. Anor, T., J. Madsen, P. Dupont. Algorithms for design of continuum robots using the concentric tubes approach: a neurosurgical example. In: IEEE International Conference on Robotics and Automation, 2011, pp. 667–673.

  3. Burgner-Kahrs, J., D. C. Rucker, and H. Choset. Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6):1261–1280, 2015.

    Article  Google Scholar 

  4. Carpi, F., E. Smela. Biomedical Applications of Electroactive Polymer Actuators, Wiley Online Library, 2009.

  5. Chikhaoui, M. T., A. Cot, K. Rabenorosoa, P. Rougeot, N. Andreff. Design and closed-loop control of a tri-layer polypyrrole based telescopic soft robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016, pp. 1145–1150.

  6. Chikhaoui, M. T., A. Cot, K. Rabenorosoa, P. Rougeot, N. Andreff. Towards biocompatible conducting polymer actuated tubes for intracorporeal laser steering. In: Hamlyn Symposium on Medical Robotics, 2017, pp. 79–80.

  7. Chikhaoui, M. T., K. Rabenorosoa, and N. Andreff. Kinematics and performance analysis of a novel concentric tube robotic structure with embedded soft micro-actuation. Mech. Mach. Theory 104:234–254, 2016.

    Article  Google Scholar 

  8. Cianchetti, M., T. Ranzani, G. Gerboni, I. De Falco, C. Laschi, A. Menciassi. STIFF-FLOP surgical manipulator: mechanical design and experimental characterization of the single module. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 3576–3581.

  9. Cot, A., M. T. Chikhaoui, P. Rougeot, K. Rabenorosoa, N. Andreff. Synthesis, encapsulation, and performance analysis of large deformation tri-layer polypyrrole actuator. In: IEEE International Conference on Advanced Intelligent Mechatronics, 2016, pp. 436–441.

  10. Couture, T., and J. Szewczyk. Design and experimental validation of an active catheter for endovascular navigation. J. Med. Devices 12(1):011003, 2017.

    Article  Google Scholar 

  11. Gairhe, B., G. Alici, G. M. Spinks, and J. M. Cairney. Synthesis and performance evaluation of thin film PPy-PVDF multilayer electroactive polymer actuators. Sens. Actuators A 165(2):321–328, 2011.

    Article  CAS  Google Scholar 

  12. Gilbert, H. B., D. C. Rucker, and R. J. Webster III. Concentric tube robots: the state of the art and future directions. In: Robotics Research. Springer Tracts in Advanced Robotics, edited by M. Inaba, and P. Corke. New York: Springer, 2016.

    Google Scholar 

  13. Ha, J., F. Park, and P. Dupont. Elastic stability of concentric tube robots subject to external loads. IEEE Trans. Biomed. Eng. 63(6):1116–1128, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ikeuchi, M., K. Ikuta. Development of pressure-driven micro active catheter using membrane micro emboss following excimer laser ablation (MeME-X) process. In: IEEE International Conference on Robotics and Automation, 2009, pp. 4469–4472.

  15. Kudryavtsev, A. V., M. T. Chikhaoui, A. Liadov, P. Rougeot, F. Spindler, K. Rabenorosoa, J. Burgner-Kahrs, B. Tamadazte, and N. Andreff. Eye-in-hand visual servoing of concentric tube robots. IEEE Robot. Autom. Lett. 3(3):2315–2321, 2018.

    Article  Google Scholar 

  16. Li, Z., L. Wu, H. Ren, and H. Yu. Kinematic comparison of surgical tendon-driven manipulators and concentric tube manipulator. Mech. Mach. Theory 107:148–165, 2017.

    Article  Google Scholar 

  17. Nam, J., Y. Kim, and G. Jang. Resonant piezoelectric vibrator with high displacement at haptic frequency for smart devices. IEEE/ASME Trans. Mechatron. 21(1):394–401, 2016.

    Google Scholar 

  18. Rosa, B., M. S. Erden, T. Vercauteren, B. Herman, J. Szewczyk, and G. Morel. Building large mosaics of confocal edomicroscopic images using visual servoing. IEEE Trans. Bio-Med. Eng. 60(4):1041–1049, 2013.

    Article  Google Scholar 

  19. Shoa, T., J. D. W. Madden, N. R. Munce, and V. Yang. Analytical modeling of a conducting polymer-driven catheter. Polym. Int. 59:343–351, 2010.

    Article  CAS  Google Scholar 

  20. Sun, J., and H. Xie. MEMS-based endoscopic optical coherence tomography. Int. J.Opt. 2011. https://doi.org/10.1155/2011/825629.

    Article  Google Scholar 

  21. Webster, III, R. J., and B. A. Jones. Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 29(13):1661–1683, 2010.

    Article  Google Scholar 

  22. Wu, L., R. Crawford, and J. Roberts. Dexterity analysis of three 6-DOF continuum robots combining concentric tube mechanisms and cable-driven mechanisms. IEEE Robot. Autom. Lett. 2(2):514–521, 2017.

    Article  Google Scholar 

  23. Xu, K., R. E. Goldman, J. Ding, P. K. Allen, D. L. Fowler, N. Simaan. System design of an insertable robotic effector platform for single port access (SPA) surgery. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 5546–5552.

  24. Yamaura, M., T. Hagiwara, and K. Iwata. Enhancement of electrical conductivity of polypyrrole film by stretching: counter-ion effect. Synth. Metals 26(3):209–224, 1988.

    Article  CAS  Google Scholar 

  25. Yip, M. C., and D. B. Camarillo. Model-less hybrid position/force control: a minimalist approach for continuum manipulators in unknown, constrained environments. IEEE Robot. Autom. Lett. 1(2):844–851, 2016.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Labex ACTION project (contract “ANR-11-LABX-0001-01”), the Equipex ROBOTEX project (contract “ANR-10-EQPX-44-01”), and the French RENATECH network and its FEMTO-ST technological facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Taha Chikhaoui.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikhaoui, M.T., Benouhiba, A., Rougeot, P. et al. Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots. Ann Biomed Eng 46, 1511–1521 (2018). https://doi.org/10.1007/s10439-018-2038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2038-2

Keywords

Navigation