Skip to main content

Advertisement

Log in

A Skull-Mounted Robot with a Compact and Lightweight Parallel Mechanism for Positioning in Minimally Invasive Neurosurgery

  • Medical Robotics
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Robotic systems play an increasingly important role in improving feasibility and effectiveness of minimally invasive neurosurgery (MIN). However, large footprint, bulky size, and complex mechanisms limit the clinical application of existing robotic neurosurgery solutions. This paper proposes a novel skull-mounted robot with a compact and lightweight parallel mechanism for positioning of surgical tools in MIN. The system serves as a mechanical guide for automatic positioning of needles, catheters, probes, or electrodes. A parallel mechanism with 4 degrees of freedom (DOFs) is adopted, with the aim of providing sufficient accuracy and load capacity. The volume of the robot is only 50 mm × 50 mm × 40 mm and the weight is 73 g. The miniature design allows the robot to be mounted on the skull easily without consuming space in the operating room while avoiding the patient’s immobilization, simplifying the registration operation, and increasing patient comfort and tolerability. The mechanical design, kinematics and workspace are analyzed and described in detail. Three experiments on the prototype are conducted to test the stiffness, accuracy and performance. Results show that the deflection is less than 0.1 mm for holding common surgical tools and the tracking errors are less than 1.2 mm and 1.9° which is acceptable for MIN. The robot can be easily and firmly mounted on the skull model and cadaver head, and flexibly manipulated on the skull model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Anor, T., J. R. Madsen, and P. Dupont. Algorithms for design of continuum robots using the concentric tubes approach: a neurosurgical example. Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), 2011, pp. 667–673.

  2. Cheng, S. S., Y. Kim, and J. P. Desai. New actuation mechanism for actively cooled SMA springs in a neurosurgical robot. IEEE Trans. Robot. 33(4):986–993, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clancy, N. T., S. Arya, J. Qi, D. Stoyanov, G. B. Hanna, and D. S. Elson. Polarised stereo endoscope and narrowband detection for minimal access surgery. Biomed. Opt. Express 5:4108–4117, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  4. De, B. A., A. Trezza, A. Carai, E. Genovese, E. Procaccini, R. Messina, F. Randi, S. Cossu, G. Esposito, and P. Palma. Robot-assisted procedures in pediatric neurosurgery. Neurosurg. Focus 42:E7, 2017.

    Google Scholar 

  5. Deacon, G., A. Harwood, J. Holdback, D. Maiwand, M. Pearce, I. Reid, M. Street, and J. Taylor. The pathfinder image-guided surgical robot. Proc. Inst. Mech. Eng. [H] 224:691–713, 2010.

    Article  CAS  Google Scholar 

  6. Doulgeris, J. J., S. A. Gonzalez-Blohm, A. K. Filis, T. M. Shea, K. Aghayev, and F. D. Vrionis. Robotics in neurosurgery: evolution, current challenges, and compromises. Cancer Control J Moffitt Cancer Center 22:352–359, 2015.

    Article  Google Scholar 

  7. Frey, D., S. Schilt, V. Strack, A. Zdunczyk, J. Rösler, B. Niraula, P. Vajkoczy, and T. Picht. Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro-oncology 16:1365–1372, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Im, K., J. Lee, O. Lyttelton, S. H. Kim, A. C. Evans, and S. I. Kim. Brain size and cortical structure in the adult human brain. Cereb. Cortex 18:2181–2191, 2008.

    Article  PubMed  Google Scholar 

  9. Joskowicz, L., R. Shamir, M. Freiman, M. Shoham, E. Zehavi, F. Umansky, and Y. Shoshan. Image-guided system with miniature robot for precise positioning and targeting in keyhole neurosurgery. Comput Aided Surg. 11:181–193, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Joskowicz, L., M. Shoham, R. Shamir, M. Freiman, E. Zehavi, and Y. Shoshan. Miniature robot-based precise targeting system for keyhole neurosurgery: concept and preliminary results. Int. Congr. Ser. 1281:618–623, 2005.

    Article  Google Scholar 

  11. Ke, J., S. Zhang, C. Li, Y. Zhu, L. Hu, and F. Ma. Application of Bonebed–Malleus short process registration in minimally invasive cochlear implantation. Comput. Assist. Surg. 21:30–36, 2016.

    Article  Google Scholar 

  12. Kim, S., W. Xu, G. Xiaoyi, and H. Ren. Preliminary design and study of a bio-inspired wire-driven serpentine robotic manipulator with direct drive capability. Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), 2013, pp. 1409–1413.

  13. Kwoh, Y. S., J. Hou, E. A. Jonckheere, and S. Hayati. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans. Bio-med. Eng. 35:153, 1988.

    Article  CAS  Google Scholar 

  14. Labadie, R. F., J. Mitchell, R. Balachandran, and J. M. Fitzpatrick. Customized, rapid-production microstereotactic table for surgical targeting: description of concept and in vitro validation. Int. J. Comput. Assist. Radiol. Surg. 4:273–280, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lefranc, M., C. Capel, A. S. Pruvot, A. Fichten, C. Desenclos, P. Toussaint, G. D. Le, and J. Peltier. The impact of the reference imaging modality, registration method and intraoperative flat-panel computed tomography on the accuracy of the Rosa® stereotactic robot. Stereotact. Funct. Neurosurg. 92:242, 2014.

    Article  PubMed  Google Scholar 

  16. Lefranc, M., and D. L. Gars. Robotic implantation of deep brain stimulation leads, assisted by intra-operative flat-panel Ct. Acta Neurochir. 154:2069–2074, 2012.

    Article  CAS  PubMed  Google Scholar 

  17. Li, Z., J. Feiling, H. Ren, and H. Yu. A novel tele-operated flexible surgical arm with optimal trajectory tracking aiming for minimally invasive neurosurgery. Proceedings of the IEEE International Conference on Cybernetics and Intelligent Systems, 2015, pp. 239–244.

  18. Li, C., N. K. K. King, and H. Ren. Preliminary development of a skull-mounted lightweight parallel robot toward minimally invasive neurosurgery. Proceedings of the 2018 International Symposium on Medical Robotics (ISMR), 2018, pp. 1–6.

  19. Li, G., H. Su, G. A. Cole, W. Shang, K. Harrington, A. Camilo, J. G. Pilitsis, and G. S. Fischer. Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans. Biomed. Eng. 62:1077–1088, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu, Q., J. Chen, S. Shen, B. Zhang, M. G. Fujie, C. Lim, and H. Ren. Design, kinematics, simulation of omni-directional bending reachability for a parallel structure forceps manipulator. Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2016, pp. 371–376.

  21. Mattei, T. A., A. H. Rodriguez, D. Sambhara, and E. Mendel. Current state-of-the-art and future perspectives of robotic technology in neurosurgery. Neurosurg. Rev. 37:357–366, 2014.

    Article  PubMed  Google Scholar 

  22. Maurin, B., B. Bayle, O. Piccin, J. Gangloff, M. de Mathelin, C. Doignon, P. Zanne, and A. Gangi. A patient-mounted robotic platform for CT-scan guided procedures. IEEE Trans. Biomed. Eng. 55:2417–2425, 2008.

    Article  PubMed  Google Scholar 

  23. Mazzone, P., O. V. Filho, F. Viselli, A. Insola, S. Sposato, F. Vitale, and E. Scarnati. Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum. J. Neural Transm. 123:751–767, 2016.

    Article  PubMed  Google Scholar 

  24. Ren, H., E. Camposnanez, Z. Yaniv, F. Banovac, H. Abeledo, N. Hata, and K. Cleary. Treatment planning and image guidance for radiofrequency ablation of large tumors. IEEE J. Biomed. Health Inf. 18:920–928, 2014.

    Article  Google Scholar 

  25. Sammartino, F., V. Krishna, N. K. K. King, V. Bruno, S. Kalia, M. Hodaie, C. Marras, A. M. Lozano, and A. Fasano. Sequence of electrode implantation and outcome of deep brain stimulation for parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 87:859–863, 2016.

    Article  PubMed  Google Scholar 

  26. Shamir, R. R., L. Joskowicz, S. Spektor, and Y. Shoshan. Localization and registration accuracy in image guided neurosurgery: a clinical study. Int. J. Comput. Assist. Radiol. Surg. 4:45, 2009.

    Article  PubMed  Google Scholar 

  27. Sheng, J., and J. P. Desai. A skull-mounted robotic headframe for a neurosurgical robot. Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 2511–2516.

  28. Shoham, M., M. Burman, E. Zehavi, L. Joskowicz, E. Batkilin, and Y. Kunicher. Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans. Robot. Autom. 19:893–901, 2003.

    Article  Google Scholar 

  29. Smith, J. A., J. Jivraj, R. Wong, and V. Yang. 30 years of neurosurgical robots: review and trends for manipulators and associated navigational systems. Ann. Biomed. Eng. 44:836–846, 2016.

    Article  PubMed  Google Scholar 

  30. Stüer, C., F. Ringel, M. Stoffel, A. Reinke, M. Behr, and B. Meyer. Robotic technology in spine surgery: current applications and future developments. Acta Neurochir. Suppl. 109:241, 2011.

    Article  PubMed  Google Scholar 

  31. Su, H., W. Shang, G. Li, N. Patel, and G. S. Fischer. An MRI-guided telesurgery system using a Fabry-Perot interferometry force sensor and a pneumatic haptic device. Ann. Biomed. Eng. 45:1917–1928, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tanei, T., N. Nakahara, S. Takebayashi, M. Hirano, T. Nagatani, T. Nishihata, and T. Wakabayashi. Endoscopic biopsy for lesions located in the parenchyma of the brain: preoperative planning based on stereotactic methods. Neurol. Med. Chir. 52:617–621, 2012.

    Article  Google Scholar 

  33. Tseng, C. S., H. H. Chen, S. S. Wang, and H. M. Tseng. Image-guided robotic navigation system for neurosurgery. J. Field Robot. 17:439–447, 2015.

    Google Scholar 

  34. Ueda, H., R. Suzuki, A. Nakazawa, Y. Kurose, M. M. Marinho, N. Shono, H. Nakatomi, N. Saito, E. Watanabe, and A. Morita. Toward autonomous collision avoidance for robotic neurosurgery in deep and narrow spaces in the brain. Procedia CIRP 65:110–114, 2017.

    Article  Google Scholar 

  35. Varma, T. R., and P. Eldridge. Use of the neuromate stereotactic robot in a frameless mode for functional neurosurgery. Int. J. Med. Robot. Comput. Assist. Surg. 2:107–113, 2006.

    Article  CAS  Google Scholar 

  36. Yang, S., R. A. MacLachlan, and C. N. Riviere. Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrument. IEEE/ASME Trans. Mechatron. 20:761–772, 2015.

    Article  Google Scholar 

  37. Zamorano, L., Q. Li, S. Jain, and G. Kaur. Robotics in neurosurgery: state of the art and future technological challenges. Int. J. Med. Robot. Comput. Assist. Surg. 1:7–22, 2004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Singapore NMRC Bedside & Bench under Grant R-397-000-245-511 and NUSRI China Jiangsu Provincial Grant BK20150386 awarded to Dr. Hongliang Ren. We would like to thank Abigail Martin for her enthusiastic help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Ren.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., King, N.K.K. & Ren, H. A Skull-Mounted Robot with a Compact and Lightweight Parallel Mechanism for Positioning in Minimally Invasive Neurosurgery. Ann Biomed Eng 46, 1465–1478 (2018). https://doi.org/10.1007/s10439-018-2037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2037-3

Keywords

Navigation