Skip to main content
Log in

3D Reconstruction of Scoliotic Spines from Stereoradiography and Depth Imaging

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Spine shape can be reconstructed from stereoradiography, but often requires specialized infrastructure or fails to account for subject posture. In this paper a protocol is presented for stereo reconstructions that integrates surface recordings with radiography and naturally accounts for variations in patient posture. Low cost depth cameras are added to an existing radiographic system to capture patient pose. A statistical model of human body shape is learned from public datasets and registered to depth scans, providing 3D correspondence across images for stereo reconstruction of radiographic landmarks. A radiographic phantom was used to validate these methods in vitro with RMS 3D landmark reconstruction error of 2.0 mm. Surfaces were automatically and reliably registered, with SD 12 mm translation disparity and SD .5° rotation. The proposed method is suitable for 3D radiographic reconstructions and may be beneficial in compensating for involuntary patient motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Reproduced with Permission from Ref. 8.

Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Agisoft, L. Photoscan http://www.agisoft.com/.

  2. Allen, B., B. Curless, and Z. Popović. The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Gr. 22:587–594, 2003.

    Article  Google Scholar 

  3. Andre, B., J. Dansereau, H. Labelle, B. André, J. Dansereau, and H. Labelle. Optimized vertical stereo base radiographic setup for the clinical three-dimensional reconstruction of the human spine. J. Biomech. 27:1023–1035, 1994.

    Article  PubMed  CAS  Google Scholar 

  4. Anguelov, D., P. Srinivasan, and D. Koller. Scape: shape completion and animation of people. ACM Trans. Gr. 24:408–416, 2005.

    Article  Google Scholar 

  5. Arun, K. S., T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9:698–700, 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Aubin, C. E., J. Dansereau, F. Parent, H. Labelle, and J. Guise. Morphometric evaluations of personalised 3D reconstructions and geometric models of the human spine. Med. Biol. Eng. Comput. 35:611–618, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Bogo, F., M. J. Black, M. Loper, and J. Romero. Detailed full-body reconstructions of moving people from monocular RGB-D sequences. Proceedings of the Iccv pp. 2300–2308, 2015.

  8. Bogo, F., J. Romero, M. Loper, and M. J. Black. FAUST: Dataset and evaluation for 3D mesh registration. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 3794-3801, 2014.

  9. Breque, C., J. C. Dupre, and F. Bremand. Calibration of a system of projection moiré for relief measuring: Biomechanical applications. Opt. Lasers Eng. 41:241–260, 2004.

    Article  Google Scholar 

  10. Chen, Y., Z. Liu, and Z. Zhang. Tensor-based human body modeling. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 105–12, 2013.

  11. Cheriet, F., J. Dansereau, Y. Petit, C. É. Aubin, H. Labelle, and J. A. Guise. Towards the self-calibration of a multi-view radiographic imaging system for the 3D reconstruction of the human spine and rib cage. Vision Interface 13:761, 1999.

    Google Scholar 

  12. Cheriet, F., C. Laporte, S. Kadoury, H. Labelle, and J. Dansereau. A novel system for the 3-D reconstruction of the human spine and rib cage from biplanar X-ray images. IEEE Trans. Biomed. Eng. 54:1356–1358, 2007.

    Article  PubMed  CAS  Google Scholar 

  13. Community, B. O. Blender - a 3D modeling and rendering package http://www.blender.org.

  14. Dai, J. S. Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections. Mech. Mach. Theory 92:144–152, 2015.

    Article  Google Scholar 

  15. Dansereau, J., and I. A. F. Stokes. Measurements of the three-dimensional shape of the rib cage. J. Biomech. 21:893–901, 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Drerup, B., and E. Hierholzer. Automatic localization of anatomical landmarks on the back surface and construction of a body-fixed coordinate system. J. Biomech. 20:967–970, 1987.

    Google Scholar 

  17. Drerup, B., and E. Hierholzer. Back shape measurement using video rastereography and 3-dimensional reconstruction of spinal shape. Clin. Biomech. 9:28–36, 1994.

    Article  CAS  Google Scholar 

  18. Geman, S., D. E. McClure, and D. Geman. A nonlinear filter for film restoration and other problems in image processing. CVGIP 54:281–289, 1992.

    Google Scholar 

  19. Hasler, N., C. Stoll, M. Sunkel, B. Rosenhahn, and H. P. Seidel. A statistical model of human pose and body shape. Comput. Gr. Forum 28:337–346, 2009.

    Article  Google Scholar 

  20. Hirshberg, D. A., M. Loper, E. Rachlin, and M. J. Black. Coregistration: Simultaneous alignment and modeling of articulated 3D shape. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7577 LNCS, pp. 242–255, 2012.

  21. Janicki, J., and B. Alman. Scoliosis: Review of diagnosis and treatment. Paediatr. Child Health 12:771–776, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kadoury, S., F. Cheriet, C. Laporte, and H. Labelle. A versatile 3D reconstruction system of the spine and pelvis for clinical assessment of spinal deformities. Med. Biol. Eng. Comput. 45:591–602, 2007.

    Article  PubMed  Google Scholar 

  23. Labelle, H., J. Dansereau, C. Belleeur, and J. C. Jéquier. Variability of geometric measurements from three-dimensional reconstructions of scoliotic spines and rib cages. Eur. Spine J. 4:88–94, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Legaye, J., P. Saunier, R. Dumas, and C. Vallee. Correction for patient sway in radiographic biplanar imaging for three-dimensional reconstruction of the spine: In vitro study of a new method. Acta Radiol. 50:781–790, 2009.

    Article  PubMed  CAS  Google Scholar 

  25. Loper, M. Human shape estimation using statistical body models. Ph.D. thesis, Tubingen, 2017.

  26. Loper, M., N. Mahmood, and J. Romero. SMPL: a skinned multi-person linear model. ACM Trans. Gr. 34:248, 2015.

    Article  Google Scholar 

  27. Mitulescu, A., I. Semaan, J. A. De Guise, P. Leborgne, C. Adamsbaum, and W. Skalli. Validation of the non-stereo corresponding points stereoradiographic 3D reconstruction technique. Med. Biol. Eng. Comput. 39:152–158, 2001.

    Article  PubMed  CAS  Google Scholar 

  28. Moura, D. C., and J. G. Barbosa. Real-scale 3D models of the scoliotic spine from biplanar radiography without calibration objects. Comput. Med. Imaging Gr. 38:580–585, 2014.

    Article  Google Scholar 

  29. Moura, D. C., J. G. Barbosa, A. M. Reis, and J. M. R. S. Tavares. A flexible approach for the calibration of biplanar radiography of the spine on conventional radiological systems. CMES 60:115–137, 2010.

    Google Scholar 

  30. Pishchulin, L., S. Member, S. Wuhrer, T. Helten, C. Theobalt, and B. Schiele. Building statistical shape spaces for 3D human modeling. Comput. Vision Pattern Recogn. 67:1–10, 2015.

    Google Scholar 

  31. Pons-Moll, G., J. Romero, N. Mahmood, and M. J. Black. Dyna: A model of dynamic human shape in motion. ACM Trans. Gr. 34:120, 2015.

    Article  Google Scholar 

  32. Stokes, I. A. F., D. Shuma-Hartswick, and M. S. Moreland. Spine and back-shape changes in scoliosis. Acta Orthop. 59:128–133, 1988.

    Article  CAS  Google Scholar 

  33. Sumner, R. W., and J. Popović. Deformation transfer for triangle meshes. ACM Transactions on Graphics 23:399, 2004.

    Article  Google Scholar 

  34. The MathWorks Inc. MATLAB.

  35. Tsoli, A., N. Mahmood, and M. J. Black. Breathing life into shape: capturing, modeling and animating 3d human breathing. ACM Trans. Gr. 33:1–11, 2014.

    Article  Google Scholar 

  36. Wood, G. A., and R. N. Marshall. The accuracy of DLT extrapolation in 3-dimensional film analysis. J. Biomech. 19:781–800, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Groisser.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groisser, B., Kimmel, R., Feldman, G. et al. 3D Reconstruction of Scoliotic Spines from Stereoradiography and Depth Imaging. Ann Biomed Eng 46, 1206–1215 (2018). https://doi.org/10.1007/s10439-018-2033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2033-7

Keywords

Navigation