Skip to main content
Log in

Finite Element Analysis of Tricuspid Valve Deformation from Multi-slice Computed Tomography Images

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Despite the growing clinical interest in the tricuspid valve (TV), there is an incomplete understanding of TV biomechanics which is important in normal TV function and successful TV repair techniques. Computational models with patient-specific human TV geometries can provide a quantitative understanding of TV biomechanic. Therefore, this study aimed to develop finite element (FE) models of human TVs from multi-slice computed tomography (MSCT) images to investigate chordal forces and leaflet stresses and strains. Three FE models were constructed for human subjects with healthy TVs from MSCT images and incorporated detailed leaflet geometries, realistic nonlinear anisotropic hyperelastic material properties of human TV, and physiological boundary conditions tracked from MSCT images. TV closure from diastole to systole was simulated. Chordal lengths were iteratively adjusted until the simulated TV geometries were in good agreement with the “true” geometries reconstructed from MSCT images at systole. Larger chordal forces were found on the strut (or basal) chords than on the rough zone chords and the total forces applied on the anterior papillary muscles by the strut chords were higher than those on the posterior or septal papillary muscles. At peak systolic pressure, the average maximum stress on the middle sections of the leaflets ranged from 30 to 90 kPa, while the average maximum principal strain values ranged from 0.16 to 0.30. The results from healthy TVs can serve as baseline biomechanical metrics of TV mechanics and may be used to inform TV repair device design. The computational approach developed could be one step towards developing computational models that may support pre-operative planning in complex TV repair procedures in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Amini Khoiy, K., and R. Amini. On the biaxial mechanical response of porcine tricuspid valve leaflets. J. Biomech. Eng. 138:104506, 2016.

    Article  Google Scholar 

  2. Bruce, C. J., and H. M. Connolly. Right-sided valve disease deserves a little more respect. Circulation 119:2726–2734, 2009.

    Article  PubMed  Google Scholar 

  3. Campelo-Parada, F., G. Perlman, F. Philippon, J. Ye, C. Thompson, E. Bédard, O. Abdul-Jawad Altisent, M. Del Trigo, J. Leipsic, P. Blanke, D. Dvir, R. Puri, J. G. Webb, and J. Rodés-Cabau. First-in-man experience of a novel transcatheter repair system for treating severe tricuspid regurgitation. J. Am. Coll. Cardiol. 66:2475–2483, 2015.

    Article  PubMed  Google Scholar 

  4. Fukuda, S., G. Saracino, Y. Matsumura, M. Daimon, H. Tran, N. L. Greenberg, T. Hozumi, J. Yoshikawa, J. D. Thomas, and T. Shiota. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation. Circulation 114:I-492–I-498, 2006.

    Article  Google Scholar 

  5. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.

    Article  PubMed  Google Scholar 

  6. Gunnal, S. A., R. N. Wabale, and M. S. Farooqui. Morphological study of chordae tendinae in human cadaveric hearts. Heart Views 16:1–12, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. He, Z., J. Ritchie, J. S. Grashow, M. S. Sacks, and A. P. Yoganathan. In vitro dynamic strain behavior of the mitral valve posterior leaflet. J. Biomech. Eng. 127:504–511, 2005.

    Article  PubMed  Google Scholar 

  8. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. Phys. Sci. Solids 61:1–48, 2000.

    Article  Google Scholar 

  9. Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.

    Article  PubMed  Google Scholar 

  10. Jouan, J., M. R. Pagel, M. E. Hiro, K. H. Lim, E. Lansac, and C. M. Duran. Further information from a sonometric study of the normal tricuspid valve annulus in sheep: geometric changes during the cardiac cycle. J. Heart Valve Dis. 16:511–518, 2007.

    PubMed  Google Scholar 

  11. Kragsnaes, E. S., J. L. Honge, J. B. Askov, J. M. Hasenkam, H. Nygaard, S. L. Nielsen, and M. O. Jensen. In-plane tricuspid valve force measurements: development of a strain gauge instrumented annuloplasty ring. Cardiovasc. Eng. Technol. 4:131–138, 2013.

    Article  Google Scholar 

  12. Latib, A., E. Agricola, A. Pozzoli, P. Denti, M. Taramasso, P. Spagnolo, J.-M. Juliard, E. Brochet, P. Ou, M. Enriquez-Sarano, F. Grigioni, O. Alfieri, A. Vahanian, A. Colombo, and F. Maisano. First-in-man implantation of a tricuspid annular remodeling device for functional tricuspid regurgitation. JACC 8:e211–e214, 2015.

    PubMed  Google Scholar 

  13. Liang, L., F. Kong, C. Martin, T. Pham, Q. Wang, J. Duncan, and W. Sun. Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images. Int. J. Numer. Methods Biomed. Eng. 33:e2827, 2017.

    Article  Google Scholar 

  14. Liang, L., M. Liu, C. Martin, and W. Sun. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis. J. R. Soc. Interface 15:20170844, 2018.

    Article  PubMed  Google Scholar 

  15. Lim, K. O. Mechanical properties and ultrastructure of normal human tricuspid valve chordae tendineae. Jpn. J. Physiol. 30:455–464, 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, H., and W. Sun. Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber-reinforced hyperelastic material model. Comput. Methods Biomech. Biomed. Eng. 19:1171–1180, 2016.

    Article  Google Scholar 

  17. Mansi, T., I. Voigt, B. Georgescu, X. Zheng, E. A. Mengue, M. Hackl, R. I. Ionasec, T. Noack, J. Seeburger, and D. Comaniciu. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med. Image Anal. 16:1330–1346, 2012.

    Article  PubMed  Google Scholar 

  18. Martin, C., and W. Sun. Biomechanical characterization of aortic valve tissue in humans and common animal models. J. Biomed. Mater. Res. A 100:1591–1599, 2012.

    Article  PubMed  CAS  Google Scholar 

  19. Meduri, C. U., V. Rajagopal, M. A. Vannan, K. Feldt, and A. Latib. Transcatheter tricuspid valve therapies. Card. Interv. Today 11:48–53, 2017.

    Google Scholar 

  20. Morgan, A. E., J. L. Pantoja, J. Weinsaft, E. Grossi, J. M. Guccione, L. Ge, and M. Ratcliffe. Finite element modeling of mitral valve repair. J. Biomech. Eng. 138:0210091–0210098, 2016.

    Article  PubMed Central  Google Scholar 

  21. Nath, J., E. Foster, and P. A. Heidenreich. Impact of tricuspid regurgitation on long-term survival. J. Am. Coll. Cardiol. 43:405–409, 2004.

    Article  PubMed  Google Scholar 

  22. Pham, T., F. Kong, C. Martin, Q. Wang, C. Primiano, R. McKay, J. Elefteriades, and W. Sun. Finite element analysis of patient-specific mitral valve with mitral regurgitation. Cardiovasc. Eng. Technol. 8:3–16, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pham, T., F. Sulejmani, E. Shin, D. Wang, and W. Sun. Quantification and comparison of the mechanical properties of four human cardiac valves. Acta Biomater. 54:345–355, 2017.

    Article  PubMed  Google Scholar 

  24. Sacks, M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, and A. P. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30:1281–1290, 2002.

    Article  PubMed  CAS  Google Scholar 

  25. Sadeghpour, A., M. Hassanzadeh, M. Kyavar, H. Bakhshandeh, N. Naderi, B. Ghadrdoost, and Talab A. Haghighat. Impact of severe tricuspid regurgitation on long term survival. Res. Cardiovasc. Med. 2:121–126, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schofer, J., K. Bijuklic, C. Tiburtius, L. Hansen, A. Groothuis, and R. T. Hahn. First-in-human transcatheter tricuspid valve repair in a patient with severely regurgitant tricuspid valve. J. Am. Coll. Cardiol. 65:1190–1195, 2015.

    Article  PubMed  Google Scholar 

  27. Schueler, R., M. Malasa, C. Hammerstingl, and G. Nickenig. Transcatheter interventions for tricuspid regurgitation: MitraClip. EuroIntervention 12:Y108–Y109, 2016.

    Article  PubMed  Google Scholar 

  28. Shiran, A., and A. Sagie. Tricuspid regurgitation in mitral valve disease. Incid. Progn. Implic. Mech. Manage. 53:401–408, 2009.

    Google Scholar 

  29. Silver, M. D., J. H. C. Lam, N. Ranganathan, and E. D. Wigle. Morphology of the human tricuspid valve. Circulation 43:333–348, 1971.

    Article  PubMed  CAS  Google Scholar 

  30. Spinner, E. M., D. Buice, C. H. Yap, and A. P. Yoganathan. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann. Biomed. Eng. 40:996–1005, 2012.

    Article  PubMed  Google Scholar 

  31. Stevanella, M., E. Votta, M. Lemma, C. Antona, and A. Redaelli. Finite element modelling of the tricuspid valve: a preliminary study. Med. Eng. Phys. 32:1213–1223, 2010.

    Article  PubMed  Google Scholar 

  32. Stuge, O., and J. Liddicoat. Emerging opportunities for cardiac surgeons within structural heart disease. J. Thorac. Cardiovasc. Surg. 132:1258–1261, 2006.

    Article  PubMed  Google Scholar 

  33. Sun, W., and M. S. Sacks. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4:190–199, 2005.

    Article  PubMed  Google Scholar 

  34. Troxler, L. G., E. M. Spinner, and A. P. Yoganathan. Measurement of strut chordal forces of the tricuspid valve using miniature C ring transducers. J. Biomech. 45:1084–1091, 2012.

    Article  PubMed  Google Scholar 

  35. van Rosendael, P. J., V. Delgado, and J. J. Bax. The tricuspid valve and the right heart: anatomical, pathological and imaging specifications. EuroIntervention 11(Suppl W):W123–W127, 2015.

    Article  PubMed  Google Scholar 

  36. Votta, E., E. Caiani, F. Veronesi, M. Soncini, F. M. Montevecchi, and A. Redaelli. Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. R. Soc. A 366:3411–3434, 2008.

    Article  Google Scholar 

  37. Wang, Q., and W. Sun. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41:142–153, 2013.

    Article  PubMed  Google Scholar 

  38. Wengenmayer, T., M. Zehender, W. Bothe, C. Bode, and S. Grundmann. First transfemoral percutaneous edge-to-edge repair of the tricuspid valve using the MitraClip system. EuroIntervention 11:1541–1544, 2016.

    Article  PubMed  Google Scholar 

  39. Xanthos, T., I. Dalivigkas, and K. A. Ekmektzoglou. Anatomic variations of the cardiac valves and papillary muscles of the right heart. Italian J. Anat. Embryol. 116:111–126, 2011.

    Google Scholar 

Download references

Acknowledgment

Research for this project was funded in part by NIH HL104080 and HL127570 Grants. The authors would like to thank Erica Shin for tissue mechanical testing of TV tissues.

Disclosures

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Additional information

Associate Editor Ellen Kuhl oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Pham, T., Martin, C. et al. Finite Element Analysis of Tricuspid Valve Deformation from Multi-slice Computed Tomography Images. Ann Biomed Eng 46, 1112–1127 (2018). https://doi.org/10.1007/s10439-018-2024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2024-8

Keywords

Navigation