Skip to main content
Log in

Cartilage Metabolism is Modulated by Synovial Fluid Through Metalloproteinase Activity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Synovial fluid (SF) contains various cytokines that regulate chondrocyte metabolism and is dynamically associated with joint disease. The objective of this study was to investigate the effects of diluted normal SF on catabolic metabolism of articular cartilage under inflammatory conditions. For this purpose, SF was isolated from healthy bovine joints, diluted, and added to cartilage explant cultures stimulated with interleukin-1 (IL-1) for 12 days. The kinetic release of sulfated glycosaminoglycan (sGAG) and collagen, as well as nitric oxide and gelatinase matrix metalloproteinases were analyzed in the supernatant. Chondrocyte survival and matrix integrity in the explants were evaluated with Live/Dead and histological staining. Diluted synovial fluid treatment suppressed sGAG and collagen release, downregulated the production of nitric oxide and matrix metalloproteinases, reduced IL-1-induced chondrocyte death, and rescued matrix depletion. Our results demonstrate that normal SF can counteract inflammation-driven cartilage catabolism. This study reports on the protective function of healthy SF and the therapeutic potential of recapitulation of SF for cartilage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

OA:

Osteoarthritis

RA:

Rheumatoid arthritis

ECM:

Extracellular matrix

NO:

Nitric oxide

MMP:

Matrix metalloproteinase

SF:

Synovial fluid

HA:

Hyaluronic acid

sGAG:

Sulfated glycosaminoglycan

References

  1. Aigner, T., S. Soeder, and J. Haag. IL-1beta and BMPs–interactive players of cartilage matrix degradation and regeneration. Eur. Cell Mater. 12:49–56, 2006.

    Article  CAS  PubMed  Google Scholar 

  2. Aizawa, T., T. Kon, T. A. Einhorn, and L. C. Gerstenfeld. Induction of apoptosis in chondrocytes by tumor necrosis factor-alpha. J. Orthop. Res. 19:785–796, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Alquraini, A., S. Garguilo, G. D’Souza, L. X. Zhang, T. A. Schmidt, G. D. Jay, and K. A. Elsaid. The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: an anti-inflammatory role of PRG4 in synovial fluid. Arthritis Res. Ther. 17:353, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arechavaleta-Velasco, F., D. Ogando, S. Parry, and F. Vadillo-Ortega. Production of matrix metalloproteinase-9 in lipopolysaccharide-stimulated human amnion occurs through an autocrine and paracrine proinflammatory cytokine-dependent system. Biol. Reprod. 67:1952–1958, 2002.

    Article  CAS  PubMed  Google Scholar 

  5. Babykutty, S., P. Suboj, P. Srinivas, A. S. Nair, K. Chandramohan, and S. Gopala. Insidious role of nitric oxide in migration/invasion of colon cancer cells by upregulating MMP-2/9 via activation of cGMP-PKG-ERK signaling pathways. Clin. Exp. Metastasis 29:471–492, 2012.

    Article  CAS  PubMed  Google Scholar 

  6. Bauvois, B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim. Biophys. Acta 29–36:2012, 1825.

    Google Scholar 

  7. Beekhuizen, M., Y. M. Bastiaansen-Jenniskens, W. Koevoet, D. B. Saris, W. J. Dhert, L. B. Creemers, and G. J. van Osch. Osteoarthritic synovial tissue inhibition of proteoglycan production in human osteoarthritic knee cartilage: establishment and characterization of a long-term cartilage-synovium coculture. Arthritis Rheum. 63:1918–1927, 2011.

    Article  CAS  PubMed  Google Scholar 

  8. Bian, L., E. G. Lima, S. L. Angione, K. W. Ng, D. Y. Williams, D. Xu, A. M. Stoker, J. L. Cook, G. A. Ateshian, and C. T. Hung. Mechanical and biochemical characterization of cartilage explants in serum-free culture. J. Biomech. 41:1153–1159, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bird, T. A., and J. Saklatvala. Identification of a common class of high affinity receptors for both types of porcine interleukin-1 on connective tissue cells. Nature 324:263, 1986.

    Article  CAS  PubMed  Google Scholar 

  10. Brand, J. A., T. E. McAlindon, and L. Zeng. A 3D system for culturing human articular chondrocytes in synovial fluid. J. Vis. Exp. 59:e3587, 2012.

    Google Scholar 

  11. Conde, J., M. Scotece, V. Abella, A. Lois, V. Lopez, T. Garcia-Caballero, J. Pino, J. J. Gomez-Reino, R. Gomez, F. Lago, and O. Gualillo. IL-36alpha: a novel cytokine involved in the catabolic and inflammatory response in chondrocytes. Sci. Rep. 5:16674, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fietz, S., R. Einspanier, S. Hoppner, B. Hertsch, and A. Bondzio. Determination of MMP-2 and -9 activities in synovial fluid of horses with osteoarthritic and arthritic joint diseases using gelatin zymography and immunocapture activity assays. Equine Vet. J. 40:266–271, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Fosang, A. J., K. Last, H. Stanton, S. B. Golub, C. B. Little, L. Brown, and D. C. Jackson. Neoepitope antibodies against MMP-cleaved and aggrecanase-cleaved aggrecan. In: Matrix Metalloproteinase Protocols, edited by I. M. Clark. Totowa, NJ: Humana Press, 2010, pp. 305–340.

    Chapter  Google Scholar 

  14. Hashizume, M., and M. Mihara. High molecular weight hyaluronic acid inhibits IL-6-induced MMP production from human chondrocytes by up-regulating the ERK inhibitor, MKP-1. Biochem. Biophys. Res. Commun. 403:184–189, 2010.

    Article  CAS  PubMed  Google Scholar 

  15. Hegewald, A. A., J. Ringe, J. Bartel, I. Kruger, M. Notter, D. Barnewitz, C. Kaps, and M. Sittinger. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell 36:431–438, 2004.

    Article  CAS  PubMed  Google Scholar 

  16. Hewitt, R. E., M. L. Corcoran, and W. G. Stetler-Stevenson. The activation, expression and function of gelatinase A (MMP-2). Trends Glycosci. Glycotechnol. 8:23–36, 1996.

    Article  CAS  Google Scholar 

  17. Hidaka, C., M. Quitoriano, R. F. Warren, and R. G. Crystal. Enhanced matrix synthesis and in vitro formation of cartilage-like tissue by genetically modified chondrocytes expressing BMP-7. J. Orthop. Res. 19:751–758, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Hoff, P., F. Buttgereit, G. R. Burmester, M. Jakstadt, T. Gaber, K. Andreas, G. Matziolis, C. Perka, and E. Rohner. Osteoarthritis synovial fluid activates pro-inflammatory cytokines in primary human chondrocytes. Int. Orthop. 37:145–151, 2013.

    Article  PubMed  Google Scholar 

  19. Lakey, R. L., and T. E. Cawston. Sulfasalazine blocks the release of proteoglycan and collagen from cytokine stimulated cartilage and down-regulates metalloproteinases. Rheumatology (Oxford) 48:1208–1212, 2009.

    Article  CAS  Google Scholar 

  20. Larbre, J. P., A. R. Moore, J. A. Da Silva, H. Iwamura, Y. Ioannou, and D. A. Willoughby. Direct degradation of articular cartilage by rheumatoid synovial fluid: contribution of proteolytic enzymes. J. Rheumatol. 21:1796–1801, 1994.

    CAS  PubMed  Google Scholar 

  21. Lee, D. A., V. Salih, E. F. Stockton, J. S. Stanton, and G. Bentley. Effect of normal synovial fluid on the metabolism of articular chondrocytes in vitro. Clin. Orthop. Relat. Res. 342:228–238, 1997.

    Article  Google Scholar 

  22. Liao, W., Z. Li, H. Zhang, J. Li, K. Wang, and Y. Yang. Proteomic analysis of synovial fluid as an analytical tool to detect candidate biomarkers for knee osteoarthritis. Int. J. Clin. Exp. Pathol. 8:9975–9989, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahmoodi, M., S. Sahebjam, D. Smookler, R. Khokha, and J. S. Mort. Lack of tissue inhibitor of metalloproteinases-3 results in an enhanced inflammatory response in antigen-induced arthritis. Am. J. Pathol. 166:1733–1740, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Malyak, M., R. E. Swaney, and W. P. Arend. Levels of synovial fluid interleukin-1 receptor antagonist in rheumatoid arthritis and other arthropathies. potential contribution from synovial fluid neutrophils. Arthritis Rheum. 36:781–789, 1993.

    Article  CAS  PubMed  Google Scholar 

  25. McNulty, A. L., N. E. Rothfusz, H. A. Leddy, and F. Guilak. Synovial fluid concentrations and relative potency of interleukin-1 alpha and beta in cartilage and meniscus degradation. J. Orthop. Res. 31:1039–1045, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mueller, M. B., and R. S. Tuan. Anabolic/Catabolic balance in pathogenesis of osteoarthritis: identifying molecular targets. PM R 3:S3–11, 2011.

    Article  PubMed  Google Scholar 

  27. Nuver-Zwart, I., J. Schalkwijk, L. A. Joosten, W. B. van den Berg, and L. B. van de Putte. Effects of synovial fluid and synovial fluid cells on chondrocyte metabolism in short term tissue culture. J. Rheumatol. 15:210–216, 1988.

    CAS  PubMed  Google Scholar 

  28. Olszewska-Slonina, D., S. Jung, D. Matewski, K. J. Olszewski, E. Krzyzynska-Malinowska, A. Braszkiewicz, and B. Kowaliszyn. Lysosomal enzymes in serum and synovial fluid in patients with osteoarthritis. Scand. J. Clin. Lab. Invest. 75:145–151, 2015.

    Article  CAS  PubMed  Google Scholar 

  29. Punzi, L., F. Oliviero, and R. Ramonda. Transforming growth factor-beta levels in synovial fluid of osteoarthritis with or without calcium pyrophosphate dihydrate crystals. J. Rheumatol. 30:420, 2003; (author reply 420-421).

    PubMed  Google Scholar 

  30. Pupaibool, J., E. J. Fulnecky, R. L. Swords, Jr, W. W. Sistrunk, and A. D. Haddow. Alpha-defensin-novel synovial fluid biomarker for the diagnosis of periprosthetic joint infection. Int. Orthop. 40:2447–2452, 2016.

    Article  PubMed  Google Scholar 

  31. Robson, H., T. Siebler, D. A. Stevens, S. M. Shalet, and G. R. Williams. Thyroid hormone acts directly on growth plate chondrocytes to promote hypertrophic differentiation and inhibit clonal expansion and cell proliferation. Endocrinology 141:3887–3897, 2000.

    Article  CAS  PubMed  Google Scholar 

  32. Rohner, E., G. Matziolis, C. Perka, B. Fuchtmeier, T. Gaber, G. R. Burmester, F. Buttgereit, and P. Hoff. Inflammatory synovial fluid microenvironment drives primary human chondrocytes to actively take part in inflammatory joint diseases. Immunol. Res. 52:169–175, 2012.

    Article  PubMed  Google Scholar 

  33. Sakai, T., F. Kambe, H. Mitsuyama, N. Ishiguro, K. Kurokouchi, M. Takigawa, H. Iwata, and H. Seo. Tumor necrosis factor alpha induces expression of genes for matrix degradation in human chondrocyte-like HCS-2/8 cells through activation of NF-kappaB: abrogation of the tumor necrosis factor alpha effect by proteasome inhibitors. J. Bone Miner. Res. 16:1272–1280, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki, K., T. Hattori, T. Fujisawa, K. Takahashi, H. Inoue, and M. Takigawa. Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes. J. Biochem. 123:431–439, 1998.

    Article  CAS  PubMed  Google Scholar 

  35. Sato, E., T. Ando, J. Ichikawa, G. Okita, N. Sato, M. Wako, T. Ohba, S. Ochiai, T. Hagino, R. Jacobson, and H. Haro. High molecular weight hyaluronic acid increases the differentiation potential of the murine chondrocytic ATDC5 cell line. J. Orthop. Res. 32:1619–1627, 2014.

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt, T. A., and R. L. Sah. Effect of synovial fluid on boundary lubrication of articular cartilage. Osteoarthr. Cartil. 15:35–47, 2007.

    Article  CAS  PubMed  Google Scholar 

  37. Schuerwegh, A. J., E. J. Dombrecht, W. J. Stevens, J. F. Van Offel, M. M. Kockx, C. H. Bridts, and L. S. De Clerck. Synovial fluid and peripheral blood immune complexes of patients with rheumatoid arthritis induce apoptosis in cytokine-activated chondrocytes. Rheumatol. Int. 27:901–909, 2007.

    Article  CAS  PubMed  Google Scholar 

  38. Schwarz, I. M., and B. A. Hills. Surface-active phospholipid as the lubricating component of lubricin. Br. J. Rheumatol. 37:21–26, 1998.

    Article  CAS  PubMed  Google Scholar 

  39. Shinoda, C., and S. Takaku. Interleukin-1 beta, interleukin-6, and tissue inhibitor of metalloproteinase-1 in the synovial fluid of the temporomandibular joint with respect to cartilage destruction. Oral Dis. 6:383–390, 2000.

    Article  CAS  PubMed  Google Scholar 

  40. Shuler, F. D., H. I. Georgescu, C. Niyibizi, R. K. Studer, Z. Mi, B. Johnstone, R. D. Robbins, and C. H. Evans. Increased matrix synthesis following adenoviral transfer of a transforming growth factor beta1 gene into articular chondrocytes. J. Orthop. Res. 18:585–592, 2000.

    Article  CAS  PubMed  Google Scholar 

  41. Snelling, S. J., S. Bas, G. J. Puskas, S. G. Dakin, D. Suva, A. Finckh, C. Gabay, P. Hoffmeyer, A. J. Carr, and A. Lubbeke. Presence of IL-17 in synovial fluid identifies a potential inflammatory osteoarthritic phenotype. PLoS ONE 12:e0175109, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun, Y., M. Lv, L. Zhou, V. Tam, F. Lv, D. Chan, H. Wang, Z. Zheng, K. M. Cheung, and V. Y. Leung. Enrichment of committed human nucleus pulposus cells expressing chondroitin sulfate proteoglycans under alginate encapsulation. Osteoarthr. Cartil. 23:1194–1203, 2015.

    Article  CAS  PubMed  Google Scholar 

  43. Takada, K., J. Hirose, S. Yamabe, Y. Uehara, and H. Mizuta. Endoplasmic reticulum stress mediates nitric oxide-induced chondrocyte apoptosis. Biomed. Rep. 1:315–319, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsuchida, A. I., M. Beekhuizen, M. Ct Hart, T. R. Radstake, W. J. Dhert, D. B. Saris, G. J. van Osch, and L. B. Creemers. Cytokine profiles in the joint depend on pathology, but are different between synovial fluid, cartilage tissue and cultured chondrocytes. Arthr. Res. Ther. 16:441, 2014.

    Article  Google Scholar 

  45. Verbruggen, A., L. S. De Clerck, C. H. Bridts, F. C. Breedveld, and W. J. Stevens. Influence of blood and synovial fluid immune complexes of patients with rheumatoid arthritis on production of nitric oxide and growth and viability of chondrocytes. J. Rheumatol. 27:35–40, 2000.

    CAS  PubMed  Google Scholar 

  46. Yang, K. G., D. B. Saris, A. J. Verbout, L. B. Creemers, and W. J. Dhert. The effect of synovial fluid from injured knee joints on in vitro chondrogenesis. Tissue Eng. 12:2957–2964, 2006.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, E., X. Yan, M. Zhang, X. Chang, Z. Bai, Y. He, and Z. Yuan. Aggrecanases in the human synovial fluid at different stages of osteoarthritis. Clin. Rheumatol. 32:797–803, 2013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Leo Q. Wan is a Pew Scholar in Biomedical Science, supported by Pew Charitable Trusts.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Q. Wan.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, E.Y., Fleck, A.K.M., Abu-Hakmeh, A.E. et al. Cartilage Metabolism is Modulated by Synovial Fluid Through Metalloproteinase Activity. Ann Biomed Eng 46, 810–818 (2018). https://doi.org/10.1007/s10439-018-2010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2010-1

Keywords

Navigation