Skip to main content

Advertisement

Log in

Data-Augmented Modeling of Intracranial Pressure

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Precise management of patients with cerebral diseases often requires intracranial pressure (ICP) monitoring, which is highly invasive and requires a specialized ICU setting. The ability to noninvasively estimate ICP is highly compelling as an alternative to, or screening for, invasive ICP measurement. Most existing approaches for noninvasive ICP estimation aim to build a regression function that maps noninvasive measurements to an ICP estimate using statistical learning techniques. These data-based approaches have met limited success, likely because the amount of training data needed is onerous for this complex applications. In this work, we discuss an alternative strategy that aims to better utilize noninvasive measurement data by leveraging mechanistic understanding of physiology. Specifically, we developed a Bayesian framework that combines a multiscale model of intracranial physiology with noninvasive measurements of cerebral blood flow using transcranial Doppler. Virtual experiments with synthetic data are conducted to verify and analyze the proposed framework. A preliminary clinical application study on two patients is also performed in which we demonstrate the ability of this method to improve ICP prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Adapted from Ref. 34.

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Andrews, P. J., G. Citerio, L. Longhi, K. Polderman, J. Sahuquillo, P. Vajkoczy, N.-I. Care, E. M. N. S. of the European Society of Intensive Care Medicine et al. NICEM consensus on neurological monitoring in acute neurological disease. Intensive Care Med. 34:1362–1370, 2008.

  2. Arnold, A., C. Battista, D. Bia, Y. Z. German, R. L. Armentano, H. Tran, and M. S. Olufsen. Uncertainty quantification in a patient-specific one-dimensional arterial network model: EnKF-based inflow estimator. J. Verif. Valid. Uncertain. Quantif. 2:011002, 2017.

    Article  Google Scholar 

  3. Arroyo-Palacios, J., M. Rudz, R. Fidler, W. Smith, N. Ko, S. Park, Y. Bai, and X. Hu. Characterization of shape differences among ICP pulses predicts outcome of external ventricular drainage weaning trial. Neurocritical Care 25:424–433, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Asiedu, D. P., K.-J. Lee, G. Mills, and E. E. Kaufmann. A review of non-invasive methods of monitoring intracranial pressure. J. Neurol. Res. 4:1–6, 2014.

    Google Scholar 

  5. Bertoglio, C., P. Moireau, and J.-F. Gerbeau. Sequential parameter estimation for fluid–structure problems: Application to hemodynamics. Int. J. Numer. Methods Biomed. Eng. 28:434–455, 2012.

  6. Brandi, G., M. Béchir, S. Sailer, C. Haberthür, R. Stocker, and J. F. Stover. Transcranial color-coded duplex sonography allows to assess cerebral perfusion pressure noninvasively following severe traumatic brain injury. Acta Neurochir. 152:965–972, 2010.

    Article  PubMed  Google Scholar 

  7. Cardim, D., C. Robba, M. Bohdanowicz, J. Donnelly, B. Cabella, X. Liu, M. Cabeleira, P. Smielewski, B. Schmidt, and M. Czosnyka. Non-invasive monitoring of intracranial pressure using transcranial Doppler ultrasonography: is it possible? Neurocritical Care. 25:473–491, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Connolly, M., P. Vespa, N. Pouratian, N. R. Gonzalez, and X. Hu. Characterization of the relationship between intracranial pressure and electroencephalographic monitoring in burst-suppressed patients. Neurocritical Care 22:212–220, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dennis, B., J. M. Ponciano, S. R. Lele, M. L. Taper, and D. F. Staples. Estimating density dependence, process noise, and observation error. Ecol. Monogr. 76:323–341, 2006.

    Article  Google Scholar 

  10. Ghajar, J. Traumatic brain injury. The Lancet 356:923–929, 2000.

    Article  CAS  Google Scholar 

  11. Giller, C. A. A bedside test for cerebral autoregulation using transcranial doppler ultrasound. Acta Neurochir. 108:7–14, 1991.

    Article  CAS  PubMed  Google Scholar 

  12. Hickman, K., B. Mayer, and M. Muwaswes. Intracranial pressure monitoring: review of risk factors associated with infection. Heart & Lung: The J. Criti. Care 19:84–90, 1990.

    CAS  Google Scholar 

  13. Hu, X., N. Gonzalez, and M. Bergsneider. Steady-state indicators of the intracranial pressure dynamic system using geodesic distance of the icp pulse waveform. Physiol. Meas. 33:2017, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hu, X., V. Nenov, M. Bergsneider, T. C. Glenn, P. Vespa, and N. Martin. Estimation of hidden state variables of the intracranial system using constrained nonlinear Kalman filters. IEEE Trans. Biomed. Eng. 54:597–610, 2007.

    Article  CAS  PubMed  Google Scholar 

  15. Hu, X., V. Nenov, M. Bergsneider, and N. Martin. A data mining framework of noninvasive intracranial pressure assessment. Biomed. Signal Process. Control 1:64–77, 2006.

    Article  Google Scholar 

  16. Hu, X., P. Xu, F. Scalzo, P. Vespa, and M. Bergsneider. Morphological clustering and analysis of continuous intracranial pressure. IEEE Trans. Biomed. Eng. 56:696–705, 2009.

    Article  PubMed  Google Scholar 

  17. Hughes, T. J. and J. Lubliner. On the one-dimensional theory of blood flow in the larger vessels. Math. Biosci. 18:161–170, 1973.

    Article  Google Scholar 

  18. Iglesias, M. A. A regularizing iterative ensemble Kalman method for PDE-constrained inverse problems. Inverse Probl. 32:025002, 2016.

    Article  Google Scholar 

  19. Iglesias, M. A., K. J. Law, and A. M. Stuart. Ensemble Kalman methods for inverse problems. Inverse Probl. 29:045001, 2013.

    Article  Google Scholar 

  20. Iman, R. L. Latin hypercube sampling. Encyclopedia of quantitative risk analysis and assessment , 2008.

  21. Itu, L., P. Sharma, C. Suciu, F. Moldoveanu, and D. Comaniciu. Personalized blood flow computations: A hierarchical parameter estimation framework for tuning boundary conditions. Int. J. Numer Methods Biomed. Eng. 33:e02803, 2017.

  22. Kashif, F. M., G. C. Verghese, V. Novak, M. Czosnyka, and T. Heldt. Model-based noninvasive estimation of intracranial pressure from cerebral blood flow velocity and arterial pressure. Sci. Transl. Med. 4:129ra44–129ra44, 2012.

  23. Kim, S., R. Hamilton, S. Pineles, M. Bergsneider, and X. Hu. Noninvasive intracranial hypertension detection utilizing semisupervised learning. IEEE Trans. Biomed. Eng. 60:1126–1133, 2013.

    Article  PubMed  Google Scholar 

  24. Kim, S., F. Scalzo, M. Bergsneider, P. Vespa, N. Martin, and X. Hu. Noninvasive intracranial pressure assessment based on a data-mining approach using a nonlinear mapping function. IEEE Trans. Biomed. Eng. 59:619–626, 2012.

    Article  PubMed  Google Scholar 

  25. Lal, R., F. Nicoud, E. Le Bars, J. Deverdun, F. Molino, V. Costalat, and B. Mohammadi. Non invasive blood flow features estimation in cerebral arteries from uncertain medical data. Ann. Biomed. Eng. 45:2574–2591, 2017.

    Article  CAS  PubMed  Google Scholar 

  26. Linninger, A. A., K. Tangen, C.-Y. Hsu, and D. Frim. Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annu. Rev. Fluid Mech. 48:219–257, 2016.

    Article  Google Scholar 

  27. Linninger, A. A., M. Xenos, B. Sweetman, S. Ponkshe, X. Guo, and R. Penn. A mathematical model of blood, cerebrospinal fluid and brain dynamics. J. Math. Biol. 59:729–759, 2009.

    Article  PubMed  Google Scholar 

  28. Marsden, A. L. Optimization in cardiovascular modeling. Annu. Rev. Fluid Mech. 46:519–546, 2014.

    Article  Google Scholar 

  29. Moireau, P., C. Bertoglio, N. Xiao, C. A. Figueroa, C. Taylor, D. Chapelle, and J.-F. Gerbeau. Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data. Biomech. Model. Mechanobiol. 12:475–496, 2013.

    Article  CAS  PubMed  Google Scholar 

  30. Moré, J. J. The Levenberg-Marquardt algorithm: implementation and theory. In: Numerical Analysis, edited by G. A. Watson, Berlin: Springer, pp. 105–116, 1978.

  31. Pant, S., C. Corsini, C. Baker, T.-Y. Hsia, G. Pennati, and I. E. Vignon-Clementel. Data assimilation and modelling of patient-specific single-ventricle physiology with and without valve regurgitation. J. Biomech. 49:2162–2173, 2016.

    Article  PubMed  Google Scholar 

  32. Piper, I. R., K. Chan, I. R. Whittle, and J. D. Miller. An experimental study of cerebrovascular resistance, pressure transmission, and craniospinal compliance. Neurosurgery 32:805–816, 1993.

    Article  CAS  PubMed  Google Scholar 

  33. Piper, I. R., J. D. Miller, N. M. Dearden, J. R. Leggate, and I. Robertson. Systems analysis of cerebrovascular pressure transmission: an observational study in head-injured patients. J. Neurosurg. 73:871–880, 1990.

    Article  CAS  PubMed  Google Scholar 

  34. Ryu, J., X. Hu, and S. C. Shadden. A coupled lumped-parameter and distributed network model for cerebral pulse-wave hemodynamics. J. Biomech. Eng. 137:101009, 2015.

    Article  PubMed  Google Scholar 

  35. Ryu, J., N. Ko, X. Hu, and S. C. Shadden. Numerical investigation of vasospasm detection by extracranial blood velocity ratios. Cerebrovasc. Dis. 43:214–222, 2017.

    Article  PubMed  Google Scholar 

  36. Serban, R. and A. C. Hindmarsh. CVODES: the sensitivity-enabled ODE solver in SUNDIALS. In: ASME 2005 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp. 257–269, 2005.

  37. Shi, Y., P. Lawford, and R. Hose. Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. Online 10:33, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stevens, S. A., W. D. Lakin, and P. L. Penar. Modeling steady-state intracranial pressures in supine, head-down tilt and microgravity conditions. Aviation Space Environ. Med. 76:329–338, 2005.

    PubMed  Google Scholar 

  39. Tiago, J., T. Guerra, and A. Sequeira. A velocity tracking approach for the data assimilation problem in blood flow simulations. Int. J. Numer. Methods Biomed. Eng. 33:e2856, 2017.

  40. Ursino, M. and M. Giannessi. A model of cerebrovascular reactivity including the circle of Willis and cortical anastomoses. Ann. Biomed. Eng. 38:955–974, 2010.

    Article  PubMed  Google Scholar 

  41. Ursino, M. and C. A. Lodi. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model. Am. J. Physiol.-Heart Circ. Physiol. 274:H1715–H1728, 1998.

    Article  CAS  Google Scholar 

  42. Wakeland, W. and B. Goldstein. A review of physiological simulation models of intracranial pressure dynamics. Comput. Biol. Med. 38:1024–1041, 2008.

    Article  PubMed  Google Scholar 

  43. Xu, P., M. Kasprowicz, M. Bergsneider, and X. Hu. Improved noninvasive intracranial pressure assessment with nonlinear kernel regression. IEEE Trans. Inf. Technol. Biomed. 14:971–978, 2010.

    Article  PubMed  Google Scholar 

  44. Zhang, X., J. E. Medow, B. J. Iskandar, F. Wang, M. Shokoueinejad, J. Koueik, and J. G. Webster. Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol. Meas. 38:R143, 2017.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

JXW would like to thank J. Pyne and J. Wu for helpful discussions. The authors also thank the anonymous reviewers for their comments and suggestions, which helped improve the quality and clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xun Wang.

Additional information

Associate Editor Karol Miller oversaw the review of this article.

Appendix A Algorithm: Regularizing Iterative Ensemble Kalman Method

Appendix A Algorithm: Regularizing Iterative Ensemble Kalman Method

Prior sampling: Use Latin hypercube sampling method to generate the prior state ensemble \(\{{\mathbf {x}}_j^{(0)}\}_{j=1}^{N_s}\), where \({\mathbf {x}}_j\) is jth sample of the augmented state, including major arterials’ CBFV and ABP, ICP, and unknown parameters. Let \(\rho \in (0, 1)\) and \(\tau = 1/\rho\).

For \(n = 1 : n_{max}\)

  1. 1.

    Forward prediction:

    1. (a)

      Evaluate the forward intracranial model with the initial physical state, boundary conditions, and model parameters, which are updated in the last iteration. Namely, the analyzed state \({\hat{\mathbf {x}}}_j^{(n)}\) at iteration step n is propagated through the forward model \({\mathcal {F}}\) at \((n+1)\)th iteration,

      $$\begin{aligned} {\mathbf {x}}_j^{(n+1)} = {\mathcal {F}}({\hat{\mathbf {x}}}_j^{n}). \end{aligned}$$
      (14)
    2. (b)

      Obtain the perturbed ensemble of observation data \(\{{\mathbf {y}}_j^{(0)}\}_{j=1}^{N_s}\) based on the data uncertainty level \(\sigma _d\).

    3. (c)

      Calculate statistical information of predicted state and observation data. We first calculate the sample means of state and data as,

      $$\begin{aligned} {\bar{\mathbf {x}}}^{(n+1)}= & {} \frac{1}{N_s}\sum _{j=1}^{N_s}{\mathbf {x}}^{(n+1)}_j \end{aligned}$$
      (15)
      $$\begin{aligned} {\bar{\mathbf {y}}}^{(n+1)}= & {} \frac{1}{N_s}\sum _{j=1}^{N_s}{\mathbf {y}}^{(n+1)}_j. \end{aligned}$$
      (16)

      The error covariances of the predicted state and observation data can then be obtained,

      $$\begin{aligned} P_m^{(n+1)}= & {} \frac{1}{N_s - 1}\sum _{j=1}^{N} \bigg ({\mathbf {x}}^{(n+1)}_j - {\bar{\mathbf {x}}}) ({\mathbf {x}}^{(n+1)}_j - {\bar{\mathbf {x}}}^{(n+1)} \bigg )^T \end{aligned}$$
      (17)
      $$\begin{aligned} P_d^{(n+1)}= & {} \frac{1}{N_s - 1}\sum _{j=1}^{N}({\mathbf {y}}^{(n+1)}_j - {\bar{\mathbf {y}}}) \bigg ({\mathbf {y}}^{(n+1)}_j - {\bar{\mathbf {y}}}^{(n+1)} \bigg )^T \end{aligned}$$
      (18)
  2. 2.

    Regularizing Bayesian analysis:

    (a) Calculate the control variable \(\alpha _i^{(n+1)}\) by following sequence,

    $$\begin{aligned} \alpha _i^{(n+1)} = 2^{i+1}\alpha _0, \end{aligned}$$
    (19)

    where an initial guess of \(\alpha _0 = 1\) is used in this work. The \(\alpha ^{n+1}\) is obtained as \(\alpha ^{(n+1)} \equiv \alpha ^{(n+1)}_{N}\), where N is the first integer when the inequality defined by Eq. (13) is satisfied. (b) Compute regularized Kalman gain matrix as,

    $$\begin{aligned} K^{(n+1)} = P_m^{(n+1)}H^T \bigg (HP_m^{(n+1)}H^T + \alpha ^{(n+1)}P_d^{(n+1)} \bigg )^{-1}, \end{aligned}$$
    (20)

    (c) Update each state sample as follows,

    $$\begin{aligned} {\hat{\mathbf {x}}}^{(n+1)} _j= {\mathbf {x}}^{(n+1)} _j + K^{(n+1)} \bigg ({\bar{\mathbf {y}}}^{(n+1)} - H{\mathbf {x}}^{(n+1)} _j \bigg ), \end{aligned}$$
    (21)
  3. 3.

    Stopping criteria:

    If

    $$\begin{aligned} \bigg |\bigg|{P_d^{(n+1)}}^{-1/2}({\mathbf {y}}^{(n+1)} - H{\bar{\mathbf {x}}}^{(n+1)}) \bigg |\bigg| \le \tau \sigma _d, \end{aligned}$$
    (22)

    then, stop the iteration. \(\sigma _d\) represents noise level of observation data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JX., Hu, X. & Shadden, S.C. Data-Augmented Modeling of Intracranial Pressure. Ann Biomed Eng 47, 714–730 (2019). https://doi.org/10.1007/s10439-018-02191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02191-z

Keywords

Navigation