Skip to main content
Log in

Spatiotemporal Analyses of Cellular Tractions Describe Subcellular Effect of Substrate Stiffness and Coating

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cells interplay with their environment through mechanical and chemical interactions. To characterize this interplay, endothelial cells were cultured on polyacrylamide hydrogels of varying stiffness, coated with either fibronectin or collagen. We developed a novel analysis technique, complementary to traction force microscopy, to characterize the spatiotemporal evolution of cellular tractions: We identified subpopulations of tractions, termed traction foci, and tracked their magnitude and lifetime. Each focus consists of tractions associated with a local single peak of maximal traction. Individual foci were spread over a larger area in cells cultured on collagen relative to those on fibronectin and exerted higher tractions on stiffer hydrogels. We found that the trends with which forces increased with increasing hydrogel stiffness were different for foci and whole-cell measurements. These differences were explained by the number of foci and their average strength. While on fibronectin multiple short-lived weak foci contributed up to 30% to the total traction on hydrogels with intermediate stiffness, short-lived foci in such a number were not observed on collagen despite the higher tractions. Our approach allows for the use of existing traction force microscopy data to gain insight at the subcellular scale without molecular probes or spatial constraining of cellular tractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ambrosi, D. Cellular traction as an inverse problem. SIAM J. Appl. Math. 66:2049–2060, 2006.

    Article  Google Scholar 

  2. Bergert, M., T. Lendenmann, M. Zündel, A. E. Ehret, D. Panozzo, P. Richner, D. K. Kim, S. J. P. Kress, D. J. Norris, O. Sorkine-Hornung, E. Mazza, D. Poulikakos, and A. Ferrari. Confocal reference free traction force microscopy. Nat. Commun. 7:12814, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Butler, J. P., I. M. Tolić-Nørrelykke, B. Fabry, and J. J. Fredberg. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282:C595–C605, 2002.

    Article  CAS  PubMed  Google Scholar 

  4. Califano, J. P., and C. A. Reinhart-King. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3:68–75, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Capitão, M., and R. Soares. Angiogenesis and inflammation crosstalk in diabetic retinopathy. J. Cell. Biochem. 117:2443–2453, 2016.

    Article  CAS  PubMed  Google Scholar 

  6. Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9:653–660, 2003.

    Article  CAS  PubMed  Google Scholar 

  7. Choi, C. K., M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz. Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10:1039–1050, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cross, M. J., and L. Claesson-Welsh. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 22:201–207, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. De Bock, K., M. Georgiadou, and P. Carmeliet. Role of endothelial cell metabolism in vessel sprouting. Cell Metab. 18:634–647, 2013.

    Article  CAS  PubMed  Google Scholar 

  10. Dembo, M., and Y.-L. Wang. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76:2307–2316, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doyle, A. D., N. Carvajal, A. Jin, K. Matsumoto, and K. M. Yamada. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat. Commun. 6:8720, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elosegui-Artola, A., R. Oria, Y. Chen, A. Kosmalska, C. Pérez-González, N. Castro, C. Zhu, X. Trepat, and P. Roca-Cusachs. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18:540–548, 2016.

    Article  CAS  PubMed  Google Scholar 

  13. Friedland, J. C., M. H. Lee, and D. Boettiger. Mechanically activated integrin switch controls α5β1 function. Science 323:642–644, 2009.

    Article  CAS  PubMed  Google Scholar 

  14. Fu, J., Y. Wang, M. T. Yang, R. A. Desai, X. Yu, Z. Liu, and C. S. Chen. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods. 7:733–736, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Galie, P. A., D.-H. T. Nguyen, C. K. Choi, D. M. Cohen, P. A. Janmey, and C. S. Chen. Fluid shear stress threshold regulates angiogenic sprouting. Proc. Natl. Acad. Sci. USA 111:7968–7973, 2014.

    Article  CAS  PubMed  Google Scholar 

  16. Garcia, D. Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal. 54:1167–1178, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ghibaudo, M., A. Saez, L. Trichet, A. Xayaphoummine, J. Browaeys, P. Silberzan, A. Buguin, and B. Ladoux. Traction forces and rigidity sensing regulate cell functions. Soft Matter. 4:1836, 2008.

    Article  CAS  Google Scholar 

  18. Han, S. J., K. S. Bielawski, L. H. Ting, M. L. Rodriguez, and N. J. Sniadecki. Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions. Biophys. J. 103:640–648, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han, S. J., Y. Oak, A. Groisman, and G. Danuser. Traction microscopy to identify force modulation in subresolution adhesions. Nat. Methods. 12:653–656, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hernández-Varas, P., U. Berge, J. G. Lock, and S. Strömblad. A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime. Nat. Commun. 6:7524, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hielscher, A., K. Ellis, C. Qiu, J. Porterfield, and S. Gerecht. Fibronectin deposition participates in extracellular matrix assembly and vascular morphogenesis. PLoS ONE 11:e0147600, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirota, K., and G. L. Semenza. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit. Rev. Oncol. Hematol. 59:15–26, 2006.

    Article  PubMed  Google Scholar 

  23. Indra, I., and K. A. Beningo. An in vitro correlation of metastatic capacity, substrate rigidity, and ECM composition. J. Cell. Biochem. 112:3151–3158, 2011.

    Article  CAS  PubMed  Google Scholar 

  24. Jannat, R. A., G. P. Robbins, B. G. Ricart, M. Dembo, and D. A. Hammer. Neutrophil adhesion and chemotaxis depend on substrate mechanics. J. Phys. Condens. Matter. 22:194117, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaverina, I., O. Krylyshkina, and J. V. Small. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146:1033–1044, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kotecki, M., A. S. Zeiger, K. J. Van Vliet, and I. M. Herman. Calpain- and talin-dependent control of microvascular pericyte contractility and cellular stiffness. Microvasc. Res. 80:339–348, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krishnan, L., C. J. Underwood, S. Maas, B. J. Ellis, T. C. Kode, J. B. Hoying, and J. A. Weiss. Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc. Res. 78:324–332, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Legant, W. R., C. K. Choi, J. S. Miller, L. Shao, L. Gao, E. Betzig, and C. S. Chen. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Natl. Acad. Sci. USA 110:881–886, 2013.

    Article  PubMed  Google Scholar 

  29. Lo, C.-M., H.-B. Wang, M. Dembo, and Y. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo, B.-H., C. V. Carman, and T. A. Springer. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25:619–647, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mason, B. N., A. Starchenko, R. M. Williams, L. J. Bonassar, and C. A. Reinhart-King. Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater. 9:4635–4644, 2013.

    Article  CAS  PubMed  Google Scholar 

  32. Müller, C., and T. Pompe. Distinct impacts of substrate elasticity and ligand affinity on traction force evolution. Soft Matter. 12:272–280, 2015.

    Article  CAS  Google Scholar 

  33. Nishida, N., H. Yano, T. Nishida, T. Kamura, and M. Kojiro. Angiogenesis in cancer. Vasc. Health Risk Manag. 2:213–219, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oakes, P. W., S. Banerjee, M. C. Marchetti, and M. L. Gardel. Geometry regulates traction stresses in adherent cells. Biophys. J. 107:825–833, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peschetola, V., V. M. Laurent, A. Duperray, R. Michel, D. Ambrosi, L. Preziosi, and C. Verdier. Time-dependent traction force microscopy for cancer cells as a measure of invasiveness. Cytoskeleton. 70:201–214, 2013.

    Article  PubMed  Google Scholar 

  36. Plotnikov, S. V., A. M. Pasapera, B. Sabass, and C. M. Waterman. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell. 151:1513–1527, 2012.

    Article  CAS  PubMed  Google Scholar 

  37. Rape, A. D., W. Guo, and Y. Wang. The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials. 32:2043–2051, 2011.

    Article  CAS  PubMed  Google Scholar 

  38. Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Endothelial cell traction forces on RGD-derivatized polyarylamide substrata. Langmuir 19:1573–1579, 2003.

    Article  CAS  Google Scholar 

  39. Reinhart-King, C. A., M. Dembo, and D. A. Hammer. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89:676–689, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roche, F., K. Sipilä, S. Honjo, S. Johansson, S. Tugues, J. Heino, and L. Claesson-Welsh. Histidine-rich glycoprotein blocks collagen-binding integrins and adhesion of endothelial cells through low-affinity interaction with α2 integrin. Matrix Biol. 48:89–99, 2015.

    Article  CAS  PubMed  Google Scholar 

  41. Sabass, B., M. L. Gardel, C. M. Waterman, and U. S. Schwarz. High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94:207–220, 2008.

    Article  CAS  PubMed  Google Scholar 

  42. Saharinen, P., L. Eklund, K. Pulkki, P. Bono, and K. Alitalo. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol. Med. 17:347–362, 2011.

    Article  CAS  PubMed  Google Scholar 

  43. Schwarz, U. S., N. Q. Balaban, D. Riveline, A. Bershadsky, B. Geiger, and S. A. Safran. Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys. J. 83:1380–1394, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwarz, U. S., and J. R. D. Soiné. Traction force microscopy on soft elastic substrates: A guide to recent computational advances. Biochim. Biophys. Acta Mol. Cell Res. 1853:3095–3104, 2015.

    Article  CAS  Google Scholar 

  45. Seong, J., A. Tajik, J. Sun, J.-L. Guan, M. J. Humphries, S. E. Craig, A. Shekaran, A. J. García, S. Lu, M. Z. Lin, N. Wang, and Y. Wang. Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins. Proc. Natl. Acad. Sci. USA 110:19372–19377, 2013.

    Article  CAS  PubMed  Google Scholar 

  46. Shiu, Y.-T., S. Li, W. A. Marganski, S. Usami, M. A. Schwartz, Y.-L. Wang, M. Dembo, and S. Chien. Rho mediates the shear-enhancement of endothelial cell migration and traction force generation. Biophys. J. 86:2558–2565, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stricker, J., Y. Aratyn-Schaus, P. W. Oakes, and M. L. Gardel. Spatiotemporal constraints on the force-dependent growth of focal adhesions. Biophys. J. 100:2883–2893, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tanimoto, H., and M. Sano. A simple force-motion relation for migrating cells revealed by multipole analysis of traction stress. Biophys. J. 106:16–25, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tse, J. R., and A. J. Engler. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. 47:1–16, 2010.

    Article  Google Scholar 

  50. Wu, Y., M. A. Al-Ameen, and G. Ghosh. Integrated effects of matrix mechanics and vascular endothelial growth factor (VEGF) on capillary sprouting. Ann. Biomed. Eng. 42:1024–1036, 2014.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

AIA, DAV, and HVO designed research; AIA, DAV, RS, and MV performed research; DAV and AJP developed analytic tools; AIA and DAV analyzed data; AIA, DAV, AJP, and HVO wrote the manuscript. Ben De Coninck was involved in carrying out additional experiments with the vinculin reporter.

Funding

Funding for this work comes from the European Research Council (FP7/2007-2013)/ ERC Grant Agreement (No. 308223), FWO-Vlaanderen (Grants Nos. G.0821.13, G087018N, and G.0B96.15), KU Leuven internal funding (IDO/13/016), and FWO and EU’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie Grant Agreement No. 665501).

Conflict of interest

All authors declare that there are no known conflicts of interest associated with this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Van Oosterwyck.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izquierdo-Álvarez, A., Vargas, D.A., Jorge-Peñas, Á. et al. Spatiotemporal Analyses of Cellular Tractions Describe Subcellular Effect of Substrate Stiffness and Coating. Ann Biomed Eng 47, 624–637 (2019). https://doi.org/10.1007/s10439-018-02164-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02164-2

Keywords

Navigation