Skip to main content
Log in

Novel In Vitro Test Systems and Insights for Transcatheter Mitral Valve Design, Part I: Paravalvular Leakage

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

While transcatheter mitral valve (TMV) replacement technology has great clinical potential for surgically inoperable patients suffering from mitral regurgitation, no TMV has yet achieved regulatory approval. The diversity of devices currently under development reflects a lack of consensus regarding optimal design approaches. In Part I of this two-part study, a test system was developed for the quantification of paravalvular leakage (PVL) following deployment of a TMV or TMV-like device in pressurized, explanted porcine hearts (N = 7). Using this system, PVL rate was investigated as a function of steady trans-mitral pressure (ΔP), TMV shape, and TMV-annular oversizing, using a series of “mock TMV plug” devices. Across all devices, PVL was found to approximately trend with the square of ΔP. PVL rates were approximately 0–15 mL/s under hypotensive pressure, 10–40 mL/s under normotension, and 30–85 mL/s under severe hypertension. D-shaped devices significantly reduced PVL vs. circular devices; however, this effect was diminished upon oversizing to the annulus by 6 mm inter-trigonal distance. In conclusion, this steady pressure, in vitro test system was effective to compare PVL performance across TMV-like designs. PVL exhibited complex dynamics in terms of its response to transvalvular pressure and TMV profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

C:

Circular

D:

D-shaped

GLM:

General Linear Model

IC:

Inter-commissural

MV:

Mitral valve

MR:

Mitral regurgitation

LVP:

Left ventricular pressure

PVL:

Paravalvular leakage

SL:

Septal-lateral

TAVR:

Transcatheter aortic valve replacement

TMV:

Transcatheter mitral valve

TMVR:

Transcatheter mitral valve replacement

ΔP :

Trans-mitral pressure gradient

References

  1. Anyanwu, A. C., and D. H. Adams. Transcatheter mitral valve replacement: the next revolution? J. Am. Coll. Cardiol. 64(17):1820–1824, 2014.

    Article  PubMed  Google Scholar 

  2. Binder, R. K., and J. G. Webb. Percutaneous mitral and aortic paravalvular leak repair: indications, current application, and future directions. Curr. Cardiol. Rep. 15:342, 2013.

    Article  PubMed  Google Scholar 

  3. Blanke, P., D. Dvir, A. Cheung, J. Ye, R. A. Levine, B. Precious, A. Berger, D. Stub, C. Hague, and D. Murphy. A simplified D-shaped model of the mitral annulus to facilitate CT-based sizing before transcatheter mitral valve implantation. J. Cardiovasc. Comput. Tomogr. 8:459–467, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carrel, T. Transcatheter mitral valve replacement: still a long way to go!. Ann. Transl. Med. 5(17):352, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cho, I. J., J. Moon, C. Y. Shim, Y. Jang, N. Chung, B.-C. Chang, and J.-W. Ha. Different clinical outcome of paravalvular leakage after aortic or mitral valve replacement. Am. J. Cardiol. 107:280–284, 2011.

    Article  PubMed  Google Scholar 

  6. De Backer, O., N. Piazza, S. Banai, G. Lutter, F. Maisano, H. C. Herrmann, O. W. Franzen, and L. Søndergaard. Percutaneous transcatheter mitral valve replacement: an overview of devices in preclinical and early clinical evaluation. Circ. Cardiovasc. Interv. 7:400–409, 2014.

    Article  PubMed  Google Scholar 

  7. Détaint, D., L. Lepage, D. Himbert, E. Brochet, D. Messika-Zeitoun, B. Iung, and A. Vahanian. Determinants of significant paravalvular regurgitation after transcatheter aortic valve implantation: impact of device and annulus discongruence. JACC 2:821–827, 2009.

    PubMed  Google Scholar 

  8. Duncan, A., A. Daqa, J. Yeh, S. Davies, A. Uebing, C. Quarto, and N. Moat. Transcatheter mitral valve replacement: long-term outcomes of first-in-man experience with an apically tethered device—a case series from a single centre. EuroIntervention 13:e1047–e1057, 2017.

    Article  PubMed  Google Scholar 

  9. Gallegos, R. P., P. J. Nockel, A. L. Rivard, and R. W. Bianco. The current state of in-vivo pre-clinical animal models for heart valve evaluation. J. Heart Valve Dis. 14:423–432, 2005.

    PubMed  Google Scholar 

  10. Gillespie, M. J., C. Aoki, S. Takebayashi, T. Shimaoka, J. R. McGarvey, R. C. Gorman, and J. H. Gorman. Development of off-pump mitral valve replacement in a porcine model. Ann. Thorac. Surg. 99:1408–1412, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Haensig, M., L. Lehmkuhl, A. J. Rastan, J. Kempfert, C. Mukherjee, M. Gutberlet, D. M. Holzhey, and F. W. Mohr. Aortic valve calcium scoring is a predictor of significant paravalvular aortic insufficiency in transapical-aortic valve implantation. Eur. J. Cardiothorac. Surg. 41:1234–1241, 2012.

    Article  PubMed  Google Scholar 

  12. Hearse, D. J., P. B. Garlick, and S. M. Humphrey. Ischemic contracture of the myocardium: mechanisms and prevention. Am. J. Cardiol. 39:986–993, 1977.

    Article  CAS  PubMed  Google Scholar 

  13. International Organization for Standardization. 5840: Cardiovascular implants—cardiac valve prostheses. Part 3: Heart valve substitutes implanted by transcatheter techniques, 2013.

  14. Jeevan, R. R., and B. M. Murari. Engineering challenges and the future prospects of transcatheter mitral valve replacement technologies: a comprehensive review of case studies. Expert Rev. Med. Devices 14:297–307, 2017.

    Article  CAS  PubMed  Google Scholar 

  15. Khoiy, K. A., D. Biswas, T. N. Decker, K. T. Asgarian, F. Loth, and R. Amini. Surface strains of porcine tricuspid valve septal leaflets measured in ex vivo beating hearts. J. Biomech. Eng. 138:111006, 2016.

    Article  Google Scholar 

  16. Kodali, S. K., M. R. Williams, C. R. Smith, L. G. Svensson, J. G. Webb, R. R. Makkar, G. P. Fontana, T. M. Dewey, V. H. Thourani, and A. D. Pichard. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N. Engl. J. Med. 366:1686–1695, 2012.

    Article  CAS  PubMed  Google Scholar 

  17. Lanir, Y. Osmotic swelling and residual stress in cardiovascular tissues. J. Biomech. 45:780–789, 2012.

    Article  PubMed  Google Scholar 

  18. Leopaldi, A., R. Vismara, S. van Tuijl, A. Redaelli, F. van de Vosse, G. B. Fiore, and M. Rutten. A novel passive left heart platform for device testing and research. Med. Eng. Phys. 37:361–366, 2015.

    Article  CAS  PubMed  Google Scholar 

  19. Loger, K., S. Pokorny, T. Schaller, I. Haben, D. Frank, and G. Lutter. Novel stent design for transcatheter mitral valve implantation. Interact. Cardiovasc. Thorac. Surg. 26:190–195, 2017.

    Article  Google Scholar 

  20. Ma, L., P. Tozzi, C. H. Huber, S. Taub, G. Gerelle, and L. K. von Segesser. Double-crowned valved stents for off-pump mitral valve replacement. Eur. J. Cardiothorac. Surg. 28:194–199, 2005.

    Article  PubMed  Google Scholar 

  21. Mirabel, M., B. Iung, G. Baron, D. Messika-Zeitoun, D. Détaint, J.-L. Vanoverschelde, E. G. Butchart, P. Ravaud, and A. Vahanian. What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur. Heart J. 28:1358–1365, 2007.

    Article  PubMed  Google Scholar 

  22. Muller, D. W., R. S. Farivar, P. Jansz, R. Bae, D. Walters, A. Clarke, P. A. Grayburn, R. C. Stoler, G. Dahle, and K. A. Rein. Transcatheter mitral valve replacement for patients with symptomatic mitral regurgitation: a global feasibility trial. J. Am. Coll. Cardiol. 69:381–391, 2017.

    Article  PubMed  Google Scholar 

  23. Naoum, C., J. Leipsic, A. Cheung, J. Ye, N. Bilbey, G. Mak, A. Berger, D. Dvir, C. Arepalli, and J. Grewal. Mitral annular dimensions and geometry in patients with functional mitral regurgitation and mitral valve prolapse: implications for transcatheter mitral valve implantation. JACC Cardiovasc. Imaging 9:269–280, 2016.

    Article  PubMed  Google Scholar 

  24. Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano. Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011, 2006.

    Article  PubMed  Google Scholar 

  25. Pant, A. D., V. S. Thomas, A. L. Black, T. Verba, J. G. Lesicko, and R. Amini. Pressure-induced microstructural changes in porcine tricuspid valve leaflets. Acta Biomater. 67:248–258, 2018.

    Article  PubMed  Google Scholar 

  26. Pierce, E. L., K. Kohli, B. Ncho, V. Sadri, C. H. Bloodworth IV, F. Mangan, and A. P. Yoganathan. Novel in vitro test systems and insights for transcatheter mitral valve design, part II: radial expansion forces. Ann. Biomed. Eng., 2018. https://doi.org/10.1007/s10439-018-02139-3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pozzoli, A., O. Alfieri, F. Maisano, and M. Taramasso. Surgical aspects of paravalvular leak. In: Transcatheter Paravalvular Leak Closure, edited by G. Smolka, and et al. Singapore: Springer, 2017, pp. 1–11.

    Google Scholar 

  28. Preston-Maher, G. L., R. Torii, and G. Burriesci. A Technical Review of Minimally Invasive Mitral Valve Replacements. Cardiovascular engineering and technology 6:174–184, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ruiz, C. E., R. T. Hahn, A. Berrebi, J. S. Borer, D. E. Cutlip, G. Fontana, G. Gerosa, R. Ibrahim, V. Jelnin, H. Jilaihawi, et al. Clinical trial principles and endpoint definitions for paravalvular leaks in surgical prosthesis: an expert statement. Eur. Heart J. 39(15):1224–1245, 2017.

    Article  Google Scholar 

  30. Sherif, M. A., M. Abdel-Wahab, B. Stöcker, V. Geist, D. Richardt, R. Tölg, and G. Richardt. Anatomic and procedural predictors of paravalvular aortic regurgitation after implantation of the Medtronic CoreValve bioprosthesis. J. Am. Coll. Cardiol. 56:1623–1629, 2010.

    Article  PubMed  Google Scholar 

  31. Sondergaard, L., M. Brooks, N. Ihlemann, A. Jonsson, S. Holme, M. Tang, K. Terp, and A. Quadri. Transcatheter mitral valve implantation via transapical approach: an early experience. Eur. J. Cardiothorac. Surg. 48(6):873–877, 2015.

    Article  PubMed  Google Scholar 

  32. Søndergaard, L., O. De Backer, O. W. Franzen, S. J. Holme, N. Ihlemann, N. G. Vejlstrup, P. B. Hansen, and A. Quadri. First-in-human case of transfemoral CardiAQ mitral valve implantation. Circ. Cardiovasc. Interv. 8:e002135, 2015.

    Article  PubMed  Google Scholar 

  33. Vanderwee, M. A., S. M. Humphrey, J. B. Gavin, and L. C. Armiger. Changes in the contractile state, fine structure and metabolism of cardiac muscle cells during the development of rigor mortis. Virchows Arch. B 35:159, 1980.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Science Foundation (DGE-1148903; ELP), and by the National Heart, Lung, and Blood Institute (R01HL113216). The authors thank Charles Bloodworth and Dr. Joseph Gorman for study design contributions, and Holifield Farms, Covington, GA, for donating porcine hearts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 54 kb)

Supplementary material 2 (PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierce, E.L., Sadri, V., Ncho, B. et al. Novel In Vitro Test Systems and Insights for Transcatheter Mitral Valve Design, Part I: Paravalvular Leakage. Ann Biomed Eng 47, 381–391 (2019). https://doi.org/10.1007/s10439-018-02154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02154-4

Keywords

Navigation