Skip to main content

Advertisement

Log in

Anisotropy of the Passive and Active Rat Vagina Under Biaxial Loading

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Pelvic organ prolapse, the descent of the pelvic organs from their normal anatomical position, is a common condition among women that is associated with mechanical alterations of the vaginal wall. In order to characterize the complex mechanical behavior of the vagina, we performed planar biaxial tests of vaginal specimens in both the passive (relaxed) and active (contracted) states. Specimens were isolated from virgin, female Long-Evans rats (n = 16) and simultaneously stretched along the longitudinal direction (LD) and circumferential direction (CD) of the vagina. Tissue contraction was induced by electric field stimulation (EFS) at incrementally increasing values of stretch and, subsequently, by KCl. On average, the vagina was stiffer in the CD than in the LD (p < 0.001). The mean maximum EFS-induced active stress was significantly higher in the CD than in the LD (p < 0.01). On the contrary, the mean KCl-induced active stress was lower in the CD than in the LD (p < 0.01). When comparing the mean maximum EFS-induced active stress to the mean KCl-induced active stress, no differences were found in the CD (p = 0.366) but, in the LD, the mean active stress was much higher in response to the KCl stimulation (p < 0.001). Collectively, these results suggest that the anisotropic behavior of the vaginal tissue is determined not only by collagen and smooth muscle fiber organization but also by the innervation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Abrams, P., K. E. Andersson, L. Birder, L. Brubaker, L. Cardozo, C. Chapple, A. Cottenden, W. Davila, D. de Ridder, R. Dmochowski, M. Drake, C. DuBeau, C. Fry, P. Hanno, J. H. Smith, S. Herschorn, G. Hosker, C. Kelleher, H. Koelbl, S. Khoury, R. Madoff, I. Milsom, K. Moore, D. Newman, V. Nitti, C. Norton, I. Nygaard, C. Payne, A. Smith, D. Staskin, S. Tekgul, J. Thuroff, A. Tubaro, D. Vodusek, A. Wein, and J. J. Wyndaele. Fourth international consultation on incontinence recommendations of the international scientific committee: evaluation and treatment of urinary incontinence, pelvic organ prolapse, and fecal incontinence. Neurourol. Urodyn. 29:213–240, 2010.

    Article  CAS  PubMed  Google Scholar 

  2. Alperin, M., A. Feola, R. Duerr, P. Moalli, and S. Abramowitch. Pregnancy- and delivery-induced biomechanical changes in rat vagina persist postpartum. Int. Urogynecol. J. 21:1169–1174, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Badiou, W., G. Granier, P.-J. Bousquet, X. Monrozies, P. Mares, and R. de Tayrac. Comparative histological analysis of anterior vaginal wall in women with pelvic organ prolapse or control subjects. A pilot study. Int. Urogynecol. J. 19:723–729, 2008.

    Article  Google Scholar 

  4. Basha, M. E., S. Chang, L. J. Burrows, J. Lassmann, A. J. Wein, R. S. Moreland, and S. Chacko. Effect of estrogen on molecular and functional characteristics of the rodent vaginal muscularis. J. Sex. Med. 10:1219–1230, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Basha, M., S. Chang, E. M. Smolock, R. S. Moreland, A. J. Wein, and S. Chacko. Regional differences in myosin heavy chain isoform expression and maximal shortening velocity of the rat vaginal wall smooth muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:R1076–R1084, 2006.

    Article  CAS  PubMed  Google Scholar 

  6. Basha, M., E. F. LaBelle, G. M. Northington, T. Wang, A. J. Wein, and S. Chacko. Functional significance of muscarinic receptor expression within the proximal and distal rat vagina. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R1486–R1493, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boreham, M. K., C. Y. Wai, R. T. Miller, J. I. Schaffer, and R. A. Word. Morphometric analysis of smooth muscle in the anterior vaginal wall of women with pelvic organ prolapse. Am. J. Obstet. Gynecol. 187:56–63, 2002.

    Article  PubMed  Google Scholar 

  8. Borges, L. F., P. S. Gutierrez, H. R. C. Marana, and S. R. Taboga. Picrosirius-polarization staining method as an efficient histopathological tool for collagenolysis detection in vesical prolapse lesions. Micron 38:580–583, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Chantereau, P., M. Brieu, M. Kammal, J. Farthmann, B. Gabriel, and M. Cosson. Mechanical properties of pelvic soft tissue of young women and impact of aging. Int. Urogynecol. J. 25:1547–1553, 2014.

    Article  CAS  PubMed  Google Scholar 

  10. Chuong, C.-J., M. Ma, R. C. Eberhart, and P. Zimmern. Viscoelastic properties measurement of the prolapsed anterior vaginal wall: a patient-directed methodology. Eur. J. Obstet. Gynecol. Reprod. Biol. 173:106–112, 2014.

    Article  PubMed  Google Scholar 

  11. Dietz, H. The aetiology of prolapse. Int. Urogynecol. J. 19:1323, 2008.

    Article  CAS  Google Scholar 

  12. Ellerkmann, R. M., G. W. Cundiff, C. F. Melick, M. A. Nihira, K. Leffler, and A. E. Bent. Correlation of symptoms with location and severity of pelvic organ prolapse. Am. J. Obstet. Gynecol. 185:1332–1338, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Epstein, L. B., C. A. Graham, and M. H. Heit. Systemic and vaginal biomechanical properties of women with normal vaginal support and pelvic organ prolapse. Am. J. Obstet. Gynecol. 197:165.e161–165.e166, 2007.

    Article  Google Scholar 

  14. Epstein, L. B., C. A. Graham, and M. H. Heit. Correlation between vaginal stiffness index and pelvic floor disorder quality-of-life scales. Int. Urogynecol. J. 19:1013–1018, 2008.

    Article  Google Scholar 

  15. Ettema, G. J. C., J. T. W. Goh, and M. R. Forwood. A new method to measure elastic properties of plastic–viscoelastic connective tissue. Med. Eng. Phys. 20:308–314, 1998.

    Article  CAS  PubMed  Google Scholar 

  16. Feola, A., S. Abramowitch, Z. Jallah, S. Stein, W. Barone, S. Palcsey, and P. Moalli. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG Int. J. Obstet. Gynaecol. 120:224–232, 2013.

    Article  CAS  Google Scholar 

  17. Feola, A., S. Abramowitch, K. Jones, S. Stein, and P. Moalli. Parity negatively impacts vaginal mechanical properties and collagen structure in rhesus macaques. Am. J. Obstet. Gynecol. 203:595.e591–595.e598, 2010.

    Article  CAS  Google Scholar 

  18. Feola, A., R. Duerr, P. Moalli, and S. Abramowitch. Changes in the rheological behavior of the vagina in women with pelvic organ prolapse. Int. Urogynecol. J. 24:1221–1227, 2013.

    Article  PubMed  Google Scholar 

  19. Feola, A., P. Moalli, M. Alperin, R. Duerr, R. E. Gandley, and S. Abramowitch. Impact of pregnancy and vaginal delivery on the passive and active mechanics of the rat vagina. Ann. Biomed. Eng. 39:549–558, 2011.

    Article  PubMed  Google Scholar 

  20. Gilchrist, A. S., A. Gupta, R. C. Eberhart, and P. E. Zimmern. Do biomechanical properties of anterior vaginal wall prolapse tissue predict outcome of surgical repair? J. Urol. 183:1069–1073, 2010.

    Article  PubMed  Google Scholar 

  21. Giraldi, A., K. Persson, V. Werkström, P. Alm, G. Wagner, and K. E. Andersson. Effects of diabetes on neurotransmission in rat vaginal smooth muscle. Int. J. Impot. Res. 13:58, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Goh, J. T. W. Biomechanical properties of prolapsed vaginal tissue in pre- and postmenopausal women. Int. Urogynecol. J. 13:76–79, 2002.

    Article  CAS  Google Scholar 

  23. Inal, H. A., P. B. Kaplan, U. Usta, E. Taştekin, A. Aybatlı, and B. Tokuc. Neuromuscular morphometry of the vaginal wall in women with anterior vaginal wall prolapse. Neurourol. Urodyn. 29:458–463, 2010.

    PubMed  Google Scholar 

  24. Jallah Z. C. The Role of Vaginal Smooth Muscle in the Pathogenesis of Pelvic Organ Prolapse. University of Pittsburgh, 2014.

  25. Jean-Charles, C., C. Rubod, M. Brieu, M. Boukerrou, J. Fasel, and M. Cosson. Biomechanical properties of prolapsed or non-prolapsed vaginal tissue: impact on genital prolapse surgery. Int. Urogynecol. J. 21:1535–1538, 2010.

    Article  PubMed  Google Scholar 

  26. Jelovsek, J. E., and M. D. Barber. Women seeking treatment for advanced pelvic organ prolapse have decreased body image and quality of life. Am. J. Obstet. Gynecol. 194:1455–1461, 2006.

    Article  PubMed  Google Scholar 

  27. Kim, N., K. Min, M. Pessina, R. Munarriz, I. Goldstein, and A. Traish. Effects of ovariectomy and steroid hormones on vaginal smooth muscle contractility. Int. J. Impot. Res. 16:43–50, 2004.

    Article  CAS  PubMed  Google Scholar 

  28. Knight, K. M., P. A. Moalli, A. Nolfi, S. Palcsey, W. R. Barone, and S. D. Abramowitch. Impact of parity on ewe vaginal mechanical properties relative to the nonhuman primate and rodent. Int. Urogynecol. J. 27:1255–1263, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lei, L., Y. Song, and R. Chen. Biomechanical properties of prolapsed vaginal tissue in pre- and postmenopausal women. Int. Urogynecol. J. 18:603–607, 2007.

    Article  Google Scholar 

  30. Liang, R., K. Knight, A. Nolfi, S. Abramowitch, and P. A. Moalli. Differential effects of selective estrogen receptor modulators on the vagina and its supportive tissues. Menopause 23:129–137, 2016.

    Article  PubMed  Google Scholar 

  31. Lin, S.-Y., Y.-T. Tee, S.-C. Ng, H. Chang, P. Lin, and G.-D. Chen. Changes in the extracellular matrix in the anterior vagina of women with or without prolapse. Int. Urogynecol. J. 18:43–48, 2007.

    Article  Google Scholar 

  32. Lopez, S. O., R. C. Eberhart, P. E. Zimmern, and C.-J. Chuong. Influence of body mass index on the biomechanical properties of the human prolapsed anterior vaginal wall. Int. Urogynecol. J. 26:519–525, 2015.

    Article  PubMed  Google Scholar 

  33. Moalli, P. A., S. H. Shand, H. M. Zyczynski, S. C. Gordy, and L. A. Meyn. Remodeling of vaginal connective tissue in patients with prolapse. Obstet. Gynecol. 106:953–963, 2005.

    Article  PubMed  Google Scholar 

  34. Rubod, C., M. Boukerrou, M. Brieu, P. Dubois, and M. Cosson. Biomechanical properties of vaginal tissue. Part 1: new experimental protocol. J. Urol. 178:320–325, 2007.

    Article  PubMed  Google Scholar 

  35. Northington, G. M., M. Basha, L. A. Arya, A. J. Wein, and S. Chacko. Contractile response of human anterior vaginal muscularis in women with and without pelvic organ prolapse. Reprod. Sci. 18:296–303, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oh, S., S. Hong, S. Kim, and J. Paick. Histological and functional aspects of different regions of the rabbit vagina. Int. J. Impot. Res. 15:142–150, 2003.

    Article  PubMed  Google Scholar 

  37. Olsen, A. L., V. J. Smith, J. O. Bergstrom, J. C. Colling, and A. L. Clark. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet. Gynecol. 89:501–506, 1997.

    Article  CAS  PubMed  Google Scholar 

  38. Patnaik S. S., B. Brazile, V. Dandolu, M. Damaser, C. van der Vaart, and J. Liao. Sheep as an animal model for pelvic organ prolapse and urogynecological research. In: ASB 2015 Annual Conference, 2015

  39. Peña, E., B. Calvo, M. A. Martínez, P. Martins, T. Mascarenhas, R. M. N. Jorge, A. Ferreira, and M. Doblaré. Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue. Biomech. Model. Mechanobiol. 9:35–44, 2010.

    Article  PubMed  Google Scholar 

  40. Peña, E., P. Martins, T. Mascarenhas, R. M. Natal Jorge, A. Ferreira, M. Doblaré, and B. Calvo. Mechanical characterization of the softening behavior of human vaginal tissue. J. Mech. Behav. Biomed. Mater. 4:275–283, 2011.

    Article  PubMed  Google Scholar 

  41. Rahn, D. D., M. D. Ruff, S. A. Brown, H. F. Tibbals, and R. A. Word. Biomechanical properties of the vaginal wall: effect of pregnancy, elastic fiber deficiency, and pelvic organ prolapse. Am. J. Obstet. Gynecol. 198:590.e591–590.e596, 2008.

    Article  Google Scholar 

  42. Robison, K. M., C. K. Conway, L. Desrosiers, L. R. Knoepp, and K. S. Miller. Biaxial mechanical assessment of the murine vaginal wall using extension-inflation testing. J. Biomech. Eng. 139:104504–104508, 2017.

    Article  Google Scholar 

  43. Röhrnbauer, B., C. Betschart, D. Perucchini, M. Bajka, D. Fink, C. Maake, E. Mazza, and D. A. Scheiner. Measuring tissue displacement of the anterior vaginal wall using the novel aspiration technique in vivo. Sci. Rep. 7:16141, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rubod, C., M. Boukerrou, M. Brieu, C. Jean-Charles, P. Dubois, and M. Cosson. Biomechanical properties of vaginal tissue: preliminary results. Int. Urogynecol. J. 19:811–816, 2008.

    Article  Google Scholar 

  45. Rubod, C., M. Brieu, M. Cosson, G. Rivaux, J.-C. Clay, L. de Landsheere, and B. Gabriel. Biomechanical properties of human pelvic organs. Urology 79:968.e917–968.e922, 2012.

    Article  Google Scholar 

  46. Rynkevic, R., P. Martins, L. Hympanova, H. Almeida, A. A. Fernandes, and J. Deprest. Biomechanical and morphological properties of the multiparous ovine vagina and effect of subsequent pregnancy. J. Biomech. 57:94–102, 2017.

    Article  PubMed  Google Scholar 

  47. Skoczylas, L. C., Z. Jallah, Y. Sugino, S. E. Stein, A. Feola, N. Yoshimura, and P. Moalli. Regional differences in rat vaginal smooth muscle contractility and morphology. Reprod. Sci. 20:382–390, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Subak, L. L., L. E. Waetjen, S. Van Den Eeden, D. H. Thom, E. Vittinghoff, and J. S. Brown. Cost of pelvic organ prolapse surgery in the United States. Obstet. Gynecol. 98:646–651, 2001.

    CAS  PubMed  Google Scholar 

  49. Takacs, P., M. Gualtieri, M. Nassiri, K. Candiotti, and C. A. Medina. Vaginal smooth muscle cell apoptosis is increased in women with pelvic organ prolapse. Int. Urogynecol. J. 19:1559, 2008.

    Article  Google Scholar 

  50. Tokar S., A. Feola, P. A. Moalli, and S. Abramowitch. Characterizing the biaxial mechanical properties of vaginal maternal adaptations during pregnancy. In: ASME 2010 Summer Bioengineering Conference, American Society of Mechanical Engineers, 2010, pp. 689–690.

  51. Ulrich, D., S. L. Edwards, V. Letouzey, K. Su, J. F. White, A. Rosamilia, C. E. Gargett, and J. A. Werkmeister. Regional variation in tissue composition and biomechanical properties of postmenopausal ovine and human vagina. PLoS ONE 9:e104972, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ulrich, D., S. L. Edwards, K. Su, J. F. White, J. A. M. Ramshaw, G. Jenkin, J. Deprest, A. Rosamilia, J. A. Werkmeister, and C. E. Gargett. Influence of reproductive status on tissue composition and biomechanical properties of ovine vagina. PLoS ONE 9:e93172, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Urbankova, I., G. Callewaert, S. Blacher, D. Deprest, L. Hympanova, A. Feola, L. De Landsheere, and J. Deprest. First delivery and ovariectomy affect biomechanical and structural properties of the vagina in the ovine model. Int. Urogynecol. J. 2018. https://doi.org/10.1007/s00192-017-3535-9.

    Article  PubMed  Google Scholar 

  54. van Helden, D. F., A. Kamiya, S. Kelsey, D. R. Laver, P. Jobling, R. Mitsui, and H. Hashitani. Nerve-induced responses of mouse vaginal smooth muscle. Pflüg. Arch. Eur. J. Physiol. 469(10):1373–1385, 2017.

    Article  CAS  Google Scholar 

  55. Wijeratne, R. S., R. D. Vita, J. A. Rittenhouse, E. B. Orler, R. B. Moore, and D. A. Dillard. Biaxial properties of individual bonds in thermomechanically bonded nonwoven fabrics. Text. Res. J. 2018. https://doi.org/10.1177/0040517517753640.

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by NSF Grant No. 1511603.

Conflicts of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella De Vita.

Additional information

Associate Editor Elena S. Di Martino oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huntington, A., Rizzuto, E., Abramowitch, S. et al. Anisotropy of the Passive and Active Rat Vagina Under Biaxial Loading. Ann Biomed Eng 47, 272–281 (2019). https://doi.org/10.1007/s10439-018-02117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02117-9

Keywords

Navigation