Skip to main content
Log in

Interpreting Activation Mapping of Atrial Fibrillation: A Hybrid Computational/Physiological Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Atrial fibrillation is the most common rhythm disorder of the heart associated with a rapid and irregular beating of the upper chambers. Activation mapping remains the gold standard to diagnose and interpret atrial fibrillation. However, fibrillatory activation maps are highly sensitive to far-field effects, and often disagree with other optical mapping modalities. Here we show that computational modeling can identify spurious non-local components of atrial fibrillation electrograms and improve activation mapping. We motivate our approach with a cohort of patients with potential drivers of persistent atrial fibrillation. In a computational study using a monodomain Maleckar model, we demonstrate that in organized rhythms, electrograms successfully track local activation, whereas in atrial fibrillation, electrograms are sensitive to spiral wave distance and number, spiral tip trajectories, and effects of fibrosis. In a clinical study, we analyzed n = 15 patients with persistent atrial fibrillation that was terminated by limited ablation. In five cases, traditional activation maps revealed a spiral wave at sites of termination; in ten cases, electrogram timings were ambiguous and activation maps showed incomplete reentry. By adjusting electrogram timing through computational modeling, we found rotational activation, which was undetectable with conventional methods. Our results demonstrate that computational modeling can identify non-local deflections to improve activation mapping and explain how and where ablation can terminate persistent atrial fibrillation. Our hybrid computational/physiological approach has the potential to optimize map-guided ablation and improve ablation therapy in atrial fibrillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Allessie, M. A., N. M. de Groot, R. P. Houben, U. Schotten, E. Boersma, J. L. Smeets, and H. J. Crijns. Electropathological substrate of long-standing persistent atrial fibrillation in patients with structural heart disease: longitudinal dissociation. Circ. Arrhythm. Electrophysiol. 3:606–615, 2010.

    Article  PubMed  Google Scholar 

  2. Anter, E., C. M. Tschabrunn, and M. E. Josephson. High-resolution mapping of scar-related atrial arrhythmias using smaller electrodes with closer interelectrode spacing. Circ. Arrhythm. Electrophysiol. 8:537–545, 2015.

    Article  PubMed  Google Scholar 

  3. Baillargeon, B., N. Rebelo, D. D. Fox, R. L. Taylor, and E. Kuhl. The Living Heart Project: a robust and integrative simulator for human heart function. Eur. J. Mech. A 48:38–47, 2014.

    Article  Google Scholar 

  4. Calkins, H., G. Hindricks, R. Cappato, Y. H. Kim, E. B. Saad, L. Aguinaga, J. G. Akar, V. Badhwar, J. Brugada, J. Camm, P. S. Chen, S. A. Chen, M. K. Chung, J. C. Nielsen, A. B. Curtis, D. W. Davies, J. D. Day, A. d’Avila, R. Natasja de Groot, L. Di Biase, M. Duytschaever, J. R. Edgerton, K. A. Ellenbogen, P. T. Ellinor, S. Ernst, G. Fenelon, E. P. Gerstenfeld, D. E. Haines, M. Haissaguerre, R. H. Helm, E. Hylek, W. M. Jackman, J. Jalife, J. M. Kalman, J. Kautzner, H. Kottkamp, K. H. Kuck, K. Kumagai, R. Lee, T. Lewalter, B. D. Lindsay, L. Macle, M. Mansour, F. E. Marchlinski, G. F. Michaud, H. Nakagawa, A. Natale, S. Nattel, K. Okumura, D. Packer, E. Pokushalov, M. R. Reynolds, P. Sanders, M. Scanavacca, R. Scanavacca, R. Schilling, C. Tondo, H. M. Tsao, A. Verma, D. J. Wilber, and T. Yamane. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation. Washington, DC: Heart Rhythm Society, 2017.

    Google Scholar 

  5. Chabiniok, R., V. Wang, M. Hadjicharalambous, L. Asner, J. Lee, M. Sermesant, E. Kuhl, A. Young, P. Moireau, M. Nash, D. Chapelle, and D. A. Nordsletten. Multiphysics and multiscale modeling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6:20150083, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chouvarda, I., N. Maglaveras, C. Pappas, F. J. L. Van Capelle, and J. DeBakker. Estimation of distance between a unipolar recording electrode and a myocardial bundle based on signal characteristics. Ann. Biomed. Eng. 32:1336–1347, 2004.

    Article  CAS  PubMed  Google Scholar 

  7. Correa de Sa, D. D., N. Thompson, J. Stinnett-Donnelly, P. Znojkiewicz, N. Habel, J. G. Muller, J. H. Bates, J. S. Buzas, and P. S. Spector. Electrogram fractionation: the relationship between spatiotemporal variation of tissue excitation and electrode spatial resolution. Circ. Arrhythm. Electrophysiol. 4:909–916, 2011.

    Article  PubMed  Google Scholar 

  8. Courtemanche, M., R. J. Ramirez, and S. Nattel. Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovasc. Res. 42:477–489, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. Dickopf, T., D. Krause, R. Krause, and M. Potse. Design and analysis of a lightweight parallel adaptive scheme for the solution of the monodomain equation. SIAM J. Sci. Comput. 36:C163–C189, 2014.

    Article  Google Scholar 

  10. Gharaviri, A., M. Potse, S. Verheule, R. Krause, A. Auricchio, and U. Schotten. Epicardical fibrosis explains increased transmural conduction in a computer model of atrial fibrillation. Comput. Cardiol. 43:237–240, 2016.

    Google Scholar 

  11. Ghoraani, B., R. Dalvi, S. Gizurarson, M. Das, A. Ha, A. Suszko, S. Krishnan, and V. S. Chauhan. Localized rotational activation in the left atrium during human atrial fibrillation: relationship to complex fractionated atrial electrograms and low-voltage zones. Heart Rhythm 10:1830–1838, 2013.

    Article  CAS  PubMed  Google Scholar 

  12. Göktepe, S., and E. Kuhl. Computational modeling of electrophysiology: a novel finite element approach. Int. J. Numer. Methods Eng. 79:156–178, 2009.

    Article  Google Scholar 

  13. Göktepe, S., and E. Kuhl. Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem. Comput. Mech. 45:227–243, 2010.

    Article  Google Scholar 

  14. Göktepe, S., J. Wong, and E. Kuhl. Atrial and ventricular fibrillation: computational simulation of spiral waves in cardiac tissue. Arch. Appl. Mech. 80:569–580, 2010.

    Article  Google Scholar 

  15. Haissaguerre, M., M. Hocini, A. Denis, A. J. Shah, Y. Komatsu, S. Yamashita, M. Daly, S. Amraoui, S. Zellerhoff, M. Q. Picat, A. Quotb, L. Jesel, H. Lim, S. Ploux, P. Bordachar, G. Attuel, V. Meillet, P. Ritter, N. Derval, F. Sacher, O. Bernus, H. Cochet, P. Jais, and R. Dubois. Driver domains in persistent atrial fibrillation. Circulation 130:530–538, 2014.

    Article  PubMed  Google Scholar 

  16. Hansen, B. J., J. Zhao, T. A. Csepe, B. T. Moore, N. Li, L. A. Jayne, A. Kalyanasundaram, P. Lim, A. Bratasz, K. A. Powell, O. P. Simonetti, R. S. Higgins, A. Kilic, P. J. Mohler, P. M. Janssen, R. Weiss, J. D. Hummel, and V. V. Fedorov. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur. Heart J. 36:2390–2401, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Herweg, B., M. Kowalski, and J. S. Steinberg. Termination of persistent atrial fibrillation resistant to cardioversion by a single radiofrequency application. Pacing Clin. Electrophysiol. 26:1420–1423, 2003.

    Article  PubMed  Google Scholar 

  18. Hurtado, D. E., and D. Henao. Gradient flows and variational principles for cardiac electrophysiology: toward efficient and robust numerical simulations of the electrical activity of the heart. Comput. Methods Appl. Mech. Eng. 273:238–254, 2014.

    Article  Google Scholar 

  19. Jacquemet, V., and C. S. Henriquez. Genesis of complex fractionated atrial electrograms in zones of slow conduction: a computer model of microfibrosis. Heart Rhythm 6:803–810, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Konings, K., J. Smeets, O. Penn, H. Wellens, and M. Allessie. Configuration of unipolar atrial electrograms during electrically induced atrial fibrillation in humans. Circulation 95:1231–1241, 1997.

    Article  CAS  PubMed  Google Scholar 

  21. Lau, D. H., B. Maesen, S. Zeemering, P. Kuklik, A. Hunnik, T. A. Lankveld, E. Bidar, S. Verheule, J. Nijs, J. Maessen, H. Crijns, P. Sanders, and U. Schotten. Indices of bipolar complex fractionated atrial electrograms correlate poorly with each other and atrial fibrillation substrate complexity. Heart Rhythm 12:1415–1423, 2015.

    Article  PubMed  Google Scholar 

  22. Lee, S., J. Sahadevan, C. M. Khrestian, I. Cakulev, A. Markowitz, and A. L. Waldo. Simultaneous bi-atrial high density epicardial mapping of persistent and long-standing persistent atrial fibrillation in patients: new insights into the mechanism of its maintenance. Circulation 132:2108–2117, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee, L. C., J. Sundnes, M. Geriet, J. F. Wenk, and S. T. Wall. An integrated electromechanical-growth heart model for simulating cardiac therapies. Biomech. Model. Mechanobiol. 15:791–803, 2016.

    Article  PubMed  Google Scholar 

  24. Maleckar, M. M., J. L. Greenstein, W. R. Giles, and N. A. Trayanova. K+ current changes account for the rate dependence of the action potential in the human atrial myocyte. Am. J. Physiol. Heart Circ. Physiol. 297:H1398–H1410, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller, J. M., R. C. Kowal, V. Swarup, J. P. Daubert, E. G. Daoud, J. D. Day, K. A. Ellenbogen, J. D. Hummel, T. Baykaner, D. E. Krummen, S. M. Narayan, V. Y. Reddy, K. Shivkumar, J. S. Steinberg, and K. R. Wheelan. Initial independent outcomes from focal impulse and rotor modulation ablation for atrial fibrillation: multicenter FIRM registry. J. Cardiovasc. Electrophysiol. 25:921–929, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Narayan, S. M., D. E. Krummen, A. M. Kahn, P. L. Karasik, and M. R. Franz. Evaluating fluctuations in human atrial fibrillatory cycle length using monophasic action potentials. Pacing Clin. Electrophysiol. 29:1209–1218, 2006.

    Article  PubMed  Google Scholar 

  27. Narayan, S. M., D. E. Krummen, K. Shivkumar, P. Clopton, W.-J. Rappel, and J. Miller. Treatment of atrial fibrillation by the ablation of localized sources: the conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation: CONFIRM trial. J. Am. Coll. Cardiol. 60:628–636, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Narayan, S. M., M. Wright, N. Derval, A. Jadidi, A. Forclaz, I. Nault, S. Miyazaki, F. Sacher, P. Bordachar, J. Clementy, P. Jais, M. Haissaguerre, and M. Hocini. Classifying fractionated electrograms in human atrial fibrillation using monophasic action potentials and activation mapping: evidence for localized drivers, rate acceleration and non-local signal etiologies. Heart Rhythm 8:244–253, 2011.

    Article  PubMed  Google Scholar 

  29. Narayan, S. M., J. A. Zaman, T. Baykaner, and M. R. Franz. Atrial fibrillation: can electrograms be interpreted without repolarization information? Heart Rhythm 13:962–963, 2016.

    Article  PubMed  Google Scholar 

  30. Nygren, A., C. Fiset, L. Firek, J. W. Clark, D. S. Lindblad, R. B. Clark, and W. R. Giles. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res. 82:63–81, 1998.

    Article  CAS  PubMed  Google Scholar 

  31. Pandit, S. V., O. Berenfeld, J. M. Anumonwo, R. M. Zaritski, J. Kneller, S. Nattel, and J. Jalife. Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation. Biophys. J. 88:3806–3821, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pandit, S. V., and J. Jalife. Rotors and the dynamics of cardiac fibrillation. Circ. Res. 112:849–862, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pedrotty, D. M., R. Y. Klinger, R. D. Kirkton, and N. Bursac. Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes. Cardiovasc. Res. 83:688–697, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rausch, M. K., W. Bothe, J. P. Kvitting, J. C. Swanson, N. B. Ingels, D. C. Miller, and E. Kuhl. Characterization of mitral valve annular dynamics in the beating heart. Ann. Biomed. Eng. 39:1690–1702, 2011.

    Article  PubMed  Google Scholar 

  35. Rausch, M. K., F. A. Tibayan, N. B. Ingels, D. C. Miller, and E. Kuhl. Mechanics of the mitral annulus in chronic ischemic cardiomyopathy. Ann. Biomed. Eng. 41:2171–2180, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Roney, C. H., C. D. Cantwell, N. A. Qureshi, R. A. Chowdhury, E. Dupont, P. B. Lim, E. J. Vigmond, J. H. Tweedy, F. S. Ng, and N. S. Peters. Rotor tracking using phase of electrograms recorded during atrial fibrillation. Ann. Biomed. Eng. 45:910–923, 2017.

    Article  PubMed  Google Scholar 

  37. Sahadevan, J., K. Ryu, L. Peltz, C. M. Khrestian, R. W. Stewart, A. H. Markowitz, and A. L. Waldo. Epicardial mapping of chronic atrial fibrillation in patients: preliminary observations. Circulation 110:3293–3299, 2004.

    Article  PubMed  Google Scholar 

  38. Sahli Costabal, F., F. A. Concha, D. E. Hurtado, and E. Kuhl. The importance of mechano-electrical feedback and inertia in cardiac electromechanics. Comput. Methods Appl. Mech. Eng. 320:352–368, 2017.

    Article  Google Scholar 

  39. Sahli Costabal, F., D. E. Hurtado, and E. Kuhl. Generating Purkinje networks in the human heart. J. Biomech. 49:2455–2465, 2016.

    Article  PubMed  Google Scholar 

  40. Sanchez, C., A. Corrias, A. Bueno-Orovio, M. Davies, J. Swinton, I. Jacobson, P. Laguna, E. Pueyo, and B. Rodriguez. The Na+/K+ pump is an important modulator of refractoriness and rotor dynamics in human atrial tissue. AJP Heart Circ. Physiol. 302:H1146–H1159, 2012.

    Article  CAS  Google Scholar 

  41. Sommer, P., S. Kircher, S. Rolf, S. John, A. Arya, B. Dinov, S. Richter, A. Bollmann, and G. Hindricks. Successful repeat catheter ablation of recurrent longstanding persistent atrial fibrillation with rotor elimination as the procedural endpoint: a case series. J. Cardiovasc. Electrophysiol. 27:274–280, 2016.

    Article  PubMed  Google Scholar 

  42. Spiteri, R. J., and R. C. Dean. Stiffness analysis of cardiac electrophysiological models. Ann. Biomed. Eng. 38:3592–3604, 2010.

    Article  PubMed  Google Scholar 

  43. Thompson, N. C., J. Stinnett-Donnelly, N. Habel, B. Benson, J. H. Bates, B. E. Sobel, and P. S. Spector. Improved spatial resolution and electrogram wave direction independence with the use of an orthogonal electrode configuration. J. Clin. Monit. Comput. 28:157–163, 2014.

    Article  PubMed  Google Scholar 

  44. Tomassoni, G., S. Duggal, M. Muir, L. Hutchins, K. Turner, A. M. McLoney, and A. Hesselson. Long-term follow-up of FIRM-guided ablation of atrial fibrillation: a single-center experience. J. Innov. Card. Rhythm Manag. 6:2145–2151, 2015.

    Google Scholar 

  45. Van Wagoner, D. R., A. L. Pond, M. Lamorgese, S. S. Rossie, P. M. McCarthy, and J. M. Nerbonne. Atrial L-type Ca2+ currents and human atrial fibrillation. Circ. Res. 85:428–436, 1999.

    Article  PubMed  Google Scholar 

  46. Van Wagoner, D. R., A. L. Pond, P. M. McCarthy, J. S. Trimmer, and J. M. Nerbonne. Outward potassium current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ. Res. 80:772–781, 1997.

    Article  PubMed  Google Scholar 

  47. Verma, A., C. Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, R. Weerasooriya, J. P. Albenque, S. Nardi, E. Menardi, P. Novak, and P. Sanders. Approaches to catheter ablation for persistent atrial fibrillation. N. Engl. J. Med. 372:1812–1822, 2015.

    Article  PubMed  Google Scholar 

  48. Vigmond, E., A. Pashaei, S. Amraoui, H. Cochet, and M. Hassaguerre. Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data. Heart Rhythm 13:1536–1543, 2016.

    Article  PubMed  Google Scholar 

  49. Vigueras, G., I. Roy, A. Cookson, J. Lee, N. Smith, and D. Nordsletten. Toward GPGPU accelerated human electromechanical cardiac simulations. Int. J. Numer. Methods Biomed. Eng. 30:117–134, 2014.

    Article  Google Scholar 

  50. Walters, T. E., G. Lee, G. Morris, S. Spence, M. Larobina, V. Atkinson, P. Antippa, J. Goldblatt, A. Royse, M. O’Keefe, P. Sanders, J. B. Morton, P. M. Kistler, and J. M. K. Kalman. Temporal stability of rotors and atrial activation patterns in persistent human atrial fibrillation: a high density epicardial mapping study of prolonged recordings. J. Am. Coll. Cardiol. Clin. Electrophysiol. 1:18–25, 2015.

    Google Scholar 

  51. Wilhelms, M., H. Hettmann, M. M. Maleckar, J. T. Koivumaki, O. Dossel, and G. Seemann. Benchmarking electrophysiological models of human atrial myocytes. Front. Physiol. 3:487, 2012.

    PubMed  Google Scholar 

  52. Zahid, S., H. Cochet, P. M. Boyle, E. L. Schwarz, K. N. Whyte, E. J. Vigmond, R. Dubois, M. Hocini, M. Haissaguerre, P. Jais, and N. A. Trayanova. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc. Res. 110:443–454, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Francisco Sahli Costabal is supported by a Stanford Cardiovascular Institute Seed Grant, by the Stanford School of Engineering Fellowship, by the Becas Chile-Fulbright Fellowship, and by the National Institute of Health Grant U01 HL119578. Junaid Zaman is supported by a Fulbright British Heart Foundation Scholarship. Ellen Kuhl is supported by the National Institute of Health Grant U01 HL119578. Sanjiv Narayan is supported by the National Institute of Health Grants R01 HL83359 and K24 HL8103800.

Conflict of interest

Sanjiv Narayan is co-author of intellectual property owned by the University of California Regents and licensed to Topera, Inc. He held equity in Topera and received honoraria from Medtronic and St. Jude Medical. The other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Kuhl.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 810 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahli Costabal, F., Zaman, J.A.B., Kuhl, E. et al. Interpreting Activation Mapping of Atrial Fibrillation: A Hybrid Computational/Physiological Study. Ann Biomed Eng 46, 257–269 (2018). https://doi.org/10.1007/s10439-017-1969-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1969-3

Keywords

Navigation