Skip to main content
Log in

Electrical Conductivity Method to Determine Sexual Dimorphisms in Human Temporomandibular Disc Fixed Charge Density

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To investigate potential mechanisms associated with the increased prevalence of temporomandibular joint (TMJ) disorders among women, the study objective was to determine sex-dependent and region-dependent differences in fixed charge density (FCD) using an electrical conductivity method. Seventeen TMJ discs were harvested from nine males (77 ± 4 years) and eight females (86 ± 4 years). Specimens were prepared from the anterior band, posterior band, intermediate zone, medial disc and lateral disc. FCD was determined using an electrical conductivity method, assessing differences among disc regions and between sexes. Statistical modeling showed significant effects for donor sex (p = 0.002), with cross-region FCD for male discs 0.051 ± 0.018 milliequivalent moles per gram (mEq/g) wet tissue and 0.043 ± 0.020 mEq/g wet tissue for female discs. FCD was significantly higher for male discs compared to female discs in the posterior band, with FCD 0.063 ± 0.015 mEq/g wet tissue for male discs and 0.032 ± 0.020 mEq/g wet tissue for female discs (p = 0.050). These results indicate FCD contributes approximately 20% towards TMJ disc compressive modulus, through osmotic swelling pressure regulation. Additionally, FCD regulates critical extracellular ionic/osmotic and nutrient environments. Sexual dimorphisms in TMJ disc FCD, and resulting differences in extracellular ionic/osmotic and nutrient environments, could result in altered mechano–electro-chemical environments between males and females and requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bibby, S. R., D. A. Jones, R. M. Ripley, and J. P. Urban. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine (Phila. Pa 1976) 30:487–496, 2005.

    Article  Google Scholar 

  2. Chen, C. T., K. W. Fishbein, P. A. Torzilli, A. Hilger, R. G. Spencer, and W. E. Horton, Jr. Matrix fixed-charge density as determined by magnetic resonance microscopy of bioreactor-derived hyaline cartilage correlates with biochemical and biomechanical properties. Arthritis Rheum. 48:1047–1056, 2003.

    Article  CAS  PubMed  Google Scholar 

  3. Cisewski, S. E., L. Zhang, J. Kuo, G. J. Wright, Y. Wu, M. J. Kern, and H. Yao. The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells. Osteoarthr. Cartil. 23:1790–1796, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Comper, W. D., and T. C. Laurent. Physiological function of connective tissue polysaccharides. Physiol. Rev. 58:255–315, 1978.

    Article  CAS  PubMed  Google Scholar 

  5. Cortes, D. H., N. T. Jacobs, J. F. DeLucca, and D. M. Elliott. Elastic, permeability and swelling properties of human intervertebral disc tissues: a benchmark for tissue engineering. J. Biomech. 47:2088–2094, 2014.

    Article  PubMed  Google Scholar 

  6. Detamore, M. S., J. G. Orfanos, A. J. Almarza, M. M. French, M. E. Wong, and K. A. Athanasiou. Quantitative analysis and comparative regional investigation of the extracellular matrix of the porcine temporomandibular joint disc. Matrix Biol. 24:45–57, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grodzinsky, A. J. Electromechanical and physicochemical properties of connective tissue. Crit. Rev. Biomed. Eng. 9:133–199, 1983.

    CAS  PubMed  Google Scholar 

  8. Gu, W. Y., W. M. Lai, and V. C. Mow. A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. J. Biomech. Eng. 120:169–180, 1998.

    Article  CAS  PubMed  Google Scholar 

  9. Gu, W. Y., and H. Yao. Effects of hydration and fixed charge density on fluid transport in charged hydrated soft tissues. Ann. Biomed. Eng. 31:1162–1170, 2003.

    Article  PubMed  Google Scholar 

  10. Hansson, T., T. Oberg, G. E. Carlsson, and S. Kopp. Thickness of the soft tissue layers and the articular disk in the temporomandibular joint. Acta Odontol. Scand. 35:77–83, 1977.

    Article  CAS  PubMed  Google Scholar 

  11. Hasegawa, I., S. Kuriki, S. Matsuno, and G. Matsumoto. Dependence of electrical conductivity on fixed charge density in articular cartilage. Clin. Orthop. Relat. Res. 177:283–288, 1983.

    Google Scholar 

  12. Haskin, C. L., S. B. Milam, and I. L. Cameron. Pathogenesis of degenerative joint disease in the human temporomandibular joint. Crit. Rev. Oral Biol. Med. 6:248–277, 1995.

    Article  CAS  PubMed  Google Scholar 

  13. Jackson, A. R., F. Travascio, and W. Y. Gu. Effect of mechanical loading on electrical conductivity in human intervertebral disk. J. Biomech. Eng. 131:054505, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jackson, A. R., T. Y. Yuan, C. Y. Huang, and W. Y. Gu. A conductivity approach to measuring fixed charge density in intervertebral disc tissue. Ann. Biomed. Eng. 37:2566–2573, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kuo, J., L. Zhang, T. Bacro, and H. Yao. The region-dependent biphasic viscoelastic properties of human temporomandibular joint discs under confined compression. J. Biomech. 43:1316–1321, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113:245–258, 1991.

    Article  CAS  PubMed  Google Scholar 

  17. LeResche, L. Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors. Crit. Rev. Oral Biol. Med. 8:291–305, 1997.

    Article  CAS  PubMed  Google Scholar 

  18. Lu, X. L., and V. C. Mow. Biomechanics of articular cartilage and determination of material properties. Med. Sci. Sports Exerc. 40:193–199, 2008.

    Article  PubMed  Google Scholar 

  19. Lu, X. L., V. C. Mow, and X. E. Guo. Proteoglycans and mechanical behavior of condylar cartilage. J. Dent. Res. 88:244–248, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, X. L., D. D. Sun, X. E. Guo, F. H. Chen, W. M. Lai, and V. C. Mow. Indentation determined mechanoelectrochemical properties and fixed charge density of articular cartilage. Ann. Biomed. Eng. 32:370–379, 2004.

    Article  PubMed  Google Scholar 

  21. Maroudas, A. Physicochemical properties of cartilage in the light of ion exchange theory. Biophys. J. 8:575–595, 1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maroudas, A., and H. Thomas. A simple physicochemical micromethod for determining fixed anionic groups in connective tissue. Biochim. Biophys. Acta 215:214–216, 1970.

    Article  CAS  PubMed  Google Scholar 

  23. Morrow, D., R. H. Tallents, R. W. Katzberg, W. C. Murphy, and T. C. Hart. Relationship of other joint problems and anterior disc position in symptomatic TMD patients and in asymptomatic volunteers. J. Orofac. Pain 10:15–20, 1996.

    CAS  PubMed  Google Scholar 

  24. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng. 102:73–84, 1980.

    Article  CAS  PubMed  Google Scholar 

  25. Mow, V. C., and A. Ratcliffe. Structure and function of articular cartilage and meniscus. In: Basic Orthopaedic Biomechanics, edited by V. C. Mow, and W. C. Hayes. New York: Lippincott-Raven, 1997, pp. 113–177.

    Google Scholar 

  26. Perie, D., D. Korda, and J. C. Iatridis. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. J. Biomech. 38:2164–2171, 2005.

    Article  PubMed  Google Scholar 

  27. Pritchard, S., and F. Guilak. The role of F-actin in hypo-osmotically induced cell volume change and calcium signaling in anulus fibrosus cells. Ann. Biomed. Eng. 32:103–111, 2004.

    Article  PubMed  Google Scholar 

  28. Ribeiro, R. F., R. H. Tallents, R. W. Katzberg, W. C. Murphy, M. E. Moss, A. C. Magalhaes, and O. Tavano. The prevalence of disc displacement in symptomatic and asymptomatic volunteers aged 6 to 25 years. J. Orofac. Pain 11:37–47, 1997.

    CAS  PubMed  Google Scholar 

  29. Roberts, S., J. Menage, and J. P. Urban. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine (Phila. Pa 1976) 14:166–174, 1989.

    Article  CAS  Google Scholar 

  30. Sun, D. D., X. E. Guo, M. Likhitpanichkul, W. M. Lai, and V. C. Mow. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression. J. Biomech. Eng. 126:6–16, 2004.

    Article  CAS  PubMed  Google Scholar 

  31. Urban, J. P. G., and A. Maroudas. The measurement of fixed charged density in the intervertebral disc. Biochim. Biophys. Acta Gen. Subj. 586:166–178, 1979.

    Article  CAS  Google Scholar 

  32. Urban, J. P., and J. F. McMullin. Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Spine (Phila. Pa 1976) 13:179–187, 1988.

    Article  CAS  Google Scholar 

  33. Wan, L. Q., C. Miller, X. E. Guo, and V. C. Mow. Fixed electrical charges and mobile ions affect the measurable mechano-electrochemical properties of charged-hydrated biological tissues: the articular cartilage paradigm. Mech. Chem. Biosyst. 1:81–99, 2004.

    PubMed  PubMed Central  Google Scholar 

  34. Wright, G. J., J. Kuo, C. Shi, T. R. Bacro, E. H. Slate, and H. Yao. Effect of mechanical strain on solute diffusion in human TMJ discs: an electrical conductivity study. Ann. Biomed. Eng. 41:2349–2357, 2013.

    Article  PubMed  Google Scholar 

  35. Wu, Y., S. E. Cisewski, Y. Sun, B. J. Damon, B. L. Sachs, V. D. Pellegrini, E. H. Slate, and H. Yao. Quantifying baseline fixed charge density in healthy human cartilage endplate. Spine 2017. https://doi.org/10.1097/BRS.0000000000002061.

    Google Scholar 

  36. Wuertz, K., J. P. Urban, J. Klasen, A. Ignatius, H. J. Wilke, L. Claes, and C. Neidlinger-Wilke. Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells. J. Orthop. Res. 25:1513–1522, 2007.

    Article  CAS  PubMed  Google Scholar 

  37. Yao, H., M. A. Justiz, D. Flagler, and W. Y. Gu. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Ann. Biomed. Eng. 30:1234–1241, 2002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This Project was supported by NIH Grants DE018741 and DE021134, a NIH F31 Pre-doctoral Fellowship DE023482 to GJW, and a NIH T32 Post-doctoral Fellowship DE017551 to MCC.

Conflict of Interest

None of the authors of this paper have a conflict of interest that might be construed as affecting the conduct or reporting of the work presented.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojing Chen or Hai Yao.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, G.J., Coombs, M.C., Wu, Y. et al. Electrical Conductivity Method to Determine Sexual Dimorphisms in Human Temporomandibular Disc Fixed Charge Density. Ann Biomed Eng 46, 310–317 (2018). https://doi.org/10.1007/s10439-017-1963-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1963-9

Keywords

Navigation