Skip to main content
Log in

Dual Contrast CT Method Enables Diagnostics of Cartilage Injuries and Degeneration Using a Single CT Image

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cartilage injuries may be detected using contrast-enhanced computed tomography (CECT) by observing variations in distribution of anionic contrast agent within cartilage. Currently, clinical CECT enables detection of injuries and related post-traumatic degeneration based on two subsequent CT scans. The first scan allows segmentation of articular surfaces and lesions while the latter scan allows evaluation of tissue properties. Segmentation of articular surfaces from the latter scan is difficult since the contrast agent diffusion diminishes the image contrast at surfaces. We hypothesize that this can be overcome by mixing anionic contrast agent (ioxaglate) with bismuth oxide nanoparticles (BINPs) too large to diffuse into cartilage, inducing a high contrast at the surfaces. Here, a dual contrast method employing this mixture is evaluated by determining the depth-wise X-ray attenuation profiles in intact, enzymatically degraded, and mechanically injured osteochondral samples (n = 3 × 10) using a microCT immediately and at 45 min after immersion in contrast agent. BiNPs were unable to diffuse into cartilage, producing high contrast at articular surfaces. Ioxaglate enabled the detection of enzymatic and mechanical degeneration. In conclusion, the dual contrast method allowed detection of injuries and degeneration simultaneously with accurate cartilage segmentation using a single scan conducted at 45 min after contrast agent administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Anderson, D. D., S. Chubinskaya, F. Guilak, J. A. Martin, T. R. Oegema, S. A. Olson, and J. A. Buckwalter. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J. Orthop. Res. 29:802–809, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bansal, P. N., N. S. Joshi, V. Entezari, M. W. Grinstaff, and B. D. Snyder. Contrast Enhanced Computed Tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage. Osteoarthr. Cartil. 18:184–191, 2010.

    Article  CAS  PubMed  Google Scholar 

  3. Bookstein, F. L. Random walk and the existence of evolutionary rates. Paleobiology 13:446–464, 1987.

    Article  Google Scholar 

  4. Braun, H. J., and G. E. Gold. Diagnosis of osteoarthritis: imaging. Bone 51:278–288, 2012.

    Article  PubMed  Google Scholar 

  5. Brown, T. D., R. C. Johnston, C. L. Saltzman, J. L. Marsh, and J. A. Buckwalter. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J. Orthop. Trauma 20:739–744, 2006.

    Article  PubMed  Google Scholar 

  6. Buckwalter, J. A. Mechanical injuries of articular cartilage. Iowa Orthop. J. 12:50, 1992.

    PubMed Central  Google Scholar 

  7. De La Vega, J. C., and U. O. Häfeli. Utilization of nanoparticles as X-ray contrast agents for diagnostic imaging applications. Contrast Media Mol. Imaging 10:81–95, 2015.

    Article  Google Scholar 

  8. Ewers, B., V. Jayaraman, R. Banglmaier, and R. C. Haut. Rate of blunt impact loading affects changes in retropatellar cartilage and underlying bone in the rabbit patella. J. Biomech. 35:747–755, 2002.

    Article  CAS  PubMed  Google Scholar 

  9. Harris, E. D., H. G. Parker, E. L. Radin, and S. M. Krane. Effects of proteolytic enzymes on structural and mechanical properties of cartilage. Arthritis Rheumatol. 15:497–503, 1972.

    Article  Google Scholar 

  10. Javier, D. J., N. Nitin, M. Levy, A. Ellington, and R. Richards-Kortum. Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjugate Chem. 2008. doi:10.1021/BC8001248.

    Google Scholar 

  11. Jokerst, J., V. T. Lobovkina, R. N. Zare, and S. S. Gambhir. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6:715–728, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kallioniemi, A. S., J. S. Jurvelin, M. T. Nieminen, M. J. Lammi, and J. Töyräs. Contrast agent enhanced pQCT of articular cartilage. Phys. Med. Biol. 52:1209–1219, 2007.

    Article  CAS  PubMed  Google Scholar 

  13. Karlsson, H. L., J. Gustafsson, P. Cronholm, and L. Möller. Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol. Lett. 188:112–118, 2009.

    Article  CAS  PubMed  Google Scholar 

  14. Kokkonen, H. T., A. S. Aula, H. Kröger, J.-S. Suomalainen, E. Lammentausta, E. Mervaala, J. S. Jurvelin, and J. Töyräs. Delayed computed tomography arthrography of human knee cartilage in vivo. Cartilage 3:334–341, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kokkonen, H. T., J. S. Jurvelin, V. Tiitu, and J. Töyräs. Detection of mechanical injury of articular cartilage using contrast enhanced computed tomography. Osteoarthr. Cartil. 19:295–301, 2011.

    Article  CAS  PubMed  Google Scholar 

  16. Kokkonen, H. T., J. Mäkelä, K. A. M. Kulmala, L. Rieppo, J. S. Jurvelin, V. Tiitu, H. M. Karjalainen, R. K. Korhonen, V. Kovanen, and J. Töyräs. Computed tomography detects changes in contrast agent diffusion after collagen cross-linking typical to natural aging of articular cartilage. Osteoarthr. Cartil. 19:1190–1198, 2011.

    Article  CAS  PubMed  Google Scholar 

  17. Kokkonen, H. T., J.-S. Suomalainen, A. Joukainen, H. Kröger, J. Sirola, J. S. Jurvelin, J. Salo, and J. Töyräs. In vivo diagnostics of human knee cartilage lesions using delayed CBCT arthrography. J. Orthop. Res. 32:403–412, 2014.

    Article  PubMed  Google Scholar 

  18. Lin, P. M., C.-T. C. Chen, and P. A. Torzilli. Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthr. Cartil. 12:485–496, 2004.

    Article  PubMed  Google Scholar 

  19. Liu, X. H., L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6:1522–1531, 2012.

    Article  CAS  PubMed  Google Scholar 

  20. Mohan, R. S. In your element: green bismuth. Nat. Chem. 2:336, 2010.

    Article  CAS  PubMed  Google Scholar 

  21. Moody, H. R., C. P. Brown, J. C. Bowden, R. W. Crawford, D. L. S. McElwain, and A. O. Oloyede. In vitro degradation of articular cartilage: does trypsin treatment produce consistent results? J. Anat. 209:259–267, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Myller, K. A. H., M. J. Turunen, J. T. J. Honkanen, S. P. Väänänen, J. T. Iivarinen, J. Salo, J. S. Jurvelin, and J. Töyräs. In vivo contrast-enhanced cone beam CT provides quantitative information on articular cartilage and subchondral bone. Ann. Biomed. Eng. 45:811–818, 2017.

    Article  PubMed  Google Scholar 

  23. Olson, S. A., B. D. Furman, V. B. Kraus, J. L. Huebner, and F. Guilak. Therapeutic opportunities to prevent post-traumatic arthritis: lessons from the natural history of arthritis after articular fracture. J. Orthop. Res. 33:1266–1277, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pan, D., E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza. Computed tomography in color: NanoK-enhanced spectral CT molecular imaging. Angew. Chem. 122:9829–9833, 2010.

    Article  Google Scholar 

  25. Panula, H. E., M. M. Hyttinen, J. P. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen. Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis. Ann. Rheum. Dis. 57:237–245, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peat, G., C. Bergknut, R. Frobell, A. Jöud, and M. Englund. Population-wide incidence estimates for soft tissue knee injuries presenting to healthcare in southern Sweden: data from the Skåne Healthcare Register. Arthritis Res. Ther. 16:R162, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Piscaer, T. M., J. H. Waarsing, N. Kops, P. Pavljasevic, J. A. N. Verhaar, G. J. V. M. van Osch, and H. Weinans. In vivo imaging of cartilage degeneration using μCT-arthrography. Osteoarthr. Cartil. 16:1011–1017, 2008.

    Article  CAS  PubMed  Google Scholar 

  28. Rieppo, J., J. Töyräs, M. T. Nieminen, V. Kovanen, M. M. Hyttinen, R. K. Korhonen, J. S. Jurvelin, and H. J. Helminen. Structure-function relationships in enzymatically modified articular cartilage. Cells Tissues Organs 175:121–132, 2003.

    Article  PubMed  Google Scholar 

  29. Silvast, T. S., J. S. Jurvelin, A. S. Aula, M. J. Lammi, and J. Töyräs. Contrast agent-enhanced computed tomography of articular cartilage: association with tissue composition and properties. Acta Radiol. 50:78–85, 2009.

    Article  CAS  PubMed  Google Scholar 

  30. Silvast, T. S., H. T. Kokkonen, J. S. Jurvelin, T. M. Quinn, M. T. Nieminen, and J. Töyräs. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage. Phys. Med. Biol. 54:6823–6836, 2009.

    Article  PubMed  Google Scholar 

  31. Stewart, R. C., P. N. Bansal, V. Entezari, H. Lusic, R. M. Nazarian, B. D. Snyder, and M. W. Grinstaff. Contrast-enhanced CT with a high-affinity cationic contrast agent for imaging ex vivo bovine, intact ex vivo rabbit, and in vivo rabbit cartilage. Radiology 266:141–150, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stewart, R. C., J. T. J. Honkanen, H. T. Kokkonen, V. Tiitu, S. Saarakkala, A. Joukainen, B. D. Snyder, J. S. Jurvelin, M. W. Grinstaff, and J. Töyräs. Contrast-enhanced computed tomography enables quantitative evaluation of tissue properties at intrajoint regions in cadaveric knee cartilage. Cartilage 2016. doi:10.1177/1947603516665443.

    PubMed  Google Scholar 

  33. Stewart, R. C., A. N. Patwa, H. Lusic, J. D. Freedman, M. Wathier, B. D. Snyder, A. Guermazi, and M. W. Grinstaff. Synthesis and preclinical characterization of a cationic iodinated imaging contrast agent (CA4+) and its use for quantitative computed tomography of ex vivo human hip cartilage. J. Med. Chem. 60:5543–5555, 2017.

    Article  CAS  PubMed  Google Scholar 

  34. Väänänen, S. P., J. S. Jurvelin, and H. Isaksson. Estimation of 3D shape, internal density and mechanics of proximal femur by combining bone mineral density images with shape and density templates. Biomech. Model. Mechanobiol. 11:791–800, 2012.

    Article  PubMed  Google Scholar 

  35. Verma, A., and F. Stellacci. Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21, 2010.

    Article  CAS  PubMed  Google Scholar 

  36. Yoo, H. J., S. H. Hong, J.-Y. Choi, I. J. Lee, S. J. Kim, J.-A. Choi, and H. S. Kang. Contrast-enhanced CT of articular cartilage: experimental study for quantification of glycosaminoglycan content in articular cartilage. Radiology 261:805–812, 2011.

    Article  PubMed  Google Scholar 

  37. Zhang, X.-D., D. Wu, X. Shen, J. Chen, Y.-M. Sun, P.-X. Liu, and X.-J. Liang. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33:6408–6419, 2012.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, X.-D., D. Wu, X. Shen, P.-X. Liu, N. Yang, B. Zhao, H. Zhang, Y.-M. Sun, L.-A. Zhang, and F.-Y. Fan. Size-dependent in vivo toxicity of peg-coated gold nanoparticles. Int. J. Nanomed. 6:2071–2081, 2011.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Academy of Finland (Projects 269315, 288531, and 288531), Kuopio University Hospital (VTR 5041746, 5203101, PY 210), Magnus Ehrnrooth Foundation, Finnish Cultural Foundation, and Doctoral Programme in Science, Technology and Computing (SCITECO) of University of Eastern Finland are acknowledged for financial support. MSc (Tech) Jaakko Sarin is acknowledged for assistance with the histological analysis.

Conflict of interest

Authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annina E. A. Saukko.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saukko, A.E.A., Honkanen, J.T.J., Xu, W. et al. Dual Contrast CT Method Enables Diagnostics of Cartilage Injuries and Degeneration Using a Single CT Image. Ann Biomed Eng 45, 2857–2866 (2017). https://doi.org/10.1007/s10439-017-1916-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1916-3

Keywords

Navigation