Skip to main content
Log in

Failure and Fatigue Properties of Immature Human and Porcine Parasagittal Bridging Veins

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tearing of the parasagittal bridging veins (BVs) is thought to be a source of extra-axial hemorrhage (EAH) associated with abusive traumatic brain injuries (TBIs) in children. However, the pediatric BV mechanical properties are unknown. We subjected porcine adult, porcine newborn, and human infant BVs to either a low rate pull to failure, a high rate pull to failure, or 30 s of cyclic loading followed by a pull to failure. An additional subset of human infant BVs was examined for viscoelastic recovery between two cycling episodes. We found that human infant BVs are stronger than porcine BVs, and BV mechanical properties are rate dependent, but not age dependent. Successive cyclic loading to a uniform level of stretch softened BVs with decaying peak stresses, and shifted their stress–stretch relationship. These data are critical in understanding BV tissue behavior in accidental and abusive trauma scenarios, which in turn may clarify circumstances that may be injurious to young children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Adham, M., J. P. Gournier, J. P. Favre, E. De La Roche, C. Ducerf, J. Baulieux, X. Barral, and M. Pouyet. Mechanical characteristics of fresh and frozen human descending thoracic aorta. J. Surg. Res. 64:32–34, 1996.

    Article  CAS  PubMed  Google Scholar 

  2. Bell, E. D., J. W. Sullivan, and K. L. Monson. Subfailure overstretch induces persistent changes in the passive mechanical response of cerebral arteries. Front. Bioeng. Biotechnol. 3:2, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bennell, K. L., S. A. Malcolm, J. D. Wark, and P. D. Brukner. Models for the pathogenesis of stress fractures in athletes. Br. J. Sports Med. 30:200–204, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bia, D., F. Pessana, R. Armentano, H. Perez, S. Graf, Y. Zocalo, M. Saldias, N. Perez, O. Alvarez, W. Silva, D. Machin, P. Sueta, S. Ferrin, M. Acosta, and I. Alvarez. Cryopreservation procedure does not modify human carotid homografts mechanical properties: an isobaric and dynamic analysis. Cell Tissue Bank. 7:183–194, 2006.

    Article  PubMed  Google Scholar 

  5. Bia, D., Y. Zocalo, F. Pessana, R. Armentano, H. Perez-Campos, M. Saldias, and I. Alvarez. Femoral arteries energy dissipation and filtering function remain unchanged after cryopreservation procedure. Transpl. Int. 18:1346–1355, 2005.

    Article  PubMed  Google Scholar 

  6. Billmire, M., and P. Myers. Serious head injury in infants: accident or abuse? Pediatrics 75:340–342, 1985.

    CAS  PubMed  Google Scholar 

  7. Caffey, J. The whiplash shaken infant syndrome: manual shaking by the extremities with whiplash-induced intracranial and intraocular bleedings, linked with residual permanent brain damage and mental retardation. Pediatrics 54:396–403, 1974.

    CAS  PubMed  Google Scholar 

  8. Chapurlat, R. D., and P. D. Delmas. Bone microdamage: a clinical perspective. Osteoporos. Int. 20:1299–1308, 2009.

    Article  CAS  PubMed  Google Scholar 

  9. Coats, B., G. Binenbaum, C. Smith, R. L. Peiffer, C. W. Christian, A. C. Duhaime, and S. S. Margulies. Cyclic head rotations produce modest brain injury in infant piglets. J. Neurotrauma 34:235–247, 2017.

    Article  PubMed  Google Scholar 

  10. Coats B. and S. S. Margulies. Characterization of pediatric porcine skull properties during impact. In: Int Conf of Biomech of Impacts, 2003, pp. 57–66.

  11. Coats, B., and S. S. Margulies. Material properties of human infant skull and suture at high rates. J. Neurotrauma 23:1222–1232, 2006.

    Article  PubMed  Google Scholar 

  12. Delye, H., J. Goffin, P. Verschueren, J. Vander Sloten, G. Van der Perre, H. Aleaerts, I. Verpoest, and D. Berckmans. Biomechanical properties of the superior sagittal sinus-bridging vein complex. Stapp Car Crash J. 50:625–636, 2006.

    PubMed  Google Scholar 

  13. Duhaime, A. C., C. W. Christian, L. B. Rorke, and R. A. Zimmerman. Nonaccidental head injury in infants–the “shaken-baby syndrome”. N. Engl. J. Med. 338:1822–1829, 1998.

    Article  CAS  PubMed  Google Scholar 

  14. Duhaime, A. C., T. A. Gennarelli, L. E. Thibault, D. A. Bruce, S. S. Margulies, and R. Wiser. The shaken baby syndrome. A clinical, pathological, and biomechanical study. J. Neurosurg. 66:409–415, 1987.

    Article  CAS  PubMed  Google Scholar 

  15. Eisele, S. A., and G. J. Sammarco. Fatigue fractures of the foot and ankle in the athlete. J. Bone Joint Surg. Am. 75:290–298, 1993.

    Article  CAS  PubMed  Google Scholar 

  16. Ewing-Cobbs, L., L. Kramer, M. Prasad, D. N. Canales, P. T. Louis, J. M. Fletcher, H. Vollero, S. H. Landry, and K. Cheung. Neuroimaging, physical, and developmental findings after inflicted and noninflicted traumatic brain injury in young children. Pediatrics 102:300–307, 1998.

    Article  CAS  PubMed  Google Scholar 

  17. Faul, M., L. Xu, M. Wald, and V. Coronado. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002-2006. Atlanta, GA: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, 2010.

    Google Scholar 

  18. Garcia, A., M. A. Martinez, and E. Pena. Viscoelastic properties of the passive mechanical behavior of the porcine carotid artery: influence of proximal and distal positions. Biorheology 49:271–288, 2012.

    CAS  PubMed  Google Scholar 

  19. Garcia, A., M. A. Martinez, and E. Pena. Determination and modeling of the inelasticity over the length of the porcine carotid artery. J. Biomech. Eng. 135:31004, 2013.

    Article  PubMed  Google Scholar 

  20. Gefen, A., N. Gefen, Q. Zhu, R. Raghupathi, and S. S. Margulies. Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma 20:1163–1177, 2003.

    Article  PubMed  Google Scholar 

  21. Gefen, A., and S. S. Margulies. Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37:1339–1352, 2004.

    Article  PubMed  Google Scholar 

  22. Guthkelch, A. N. Infantile subdural haematoma and its relationship to whiplash injuries. Br. Med. J. 2:430–431, 1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Herman, B. E., K. L. Makoroff, and H. M. Corneli. Abusive head trauma. Pediatr. Emerg. Care 27:65–69, 2011.

    Article  PubMed  Google Scholar 

  24. Horny, L., E. Gultova, H. Chulp, R. Sedlacek, J. Kronek, J. Vesely, and R. Zitny. Mullins effect in aorta and limiting extensibility evolution. Bull. Appl. Mech. 6:1–5, 2010.

    Google Scholar 

  25. Jaspan, T. Current controversies in the interpretation of non-accidental head injury. Pediatr. Radiol. 38(Suppl 3):S378–387, 2008.

    Article  PubMed  Google Scholar 

  26. Jones, G. L. Upper extremity stress fractures. Clin. Sports Med. 25:159–174, 2006.

    Article  PubMed  Google Scholar 

  27. Komatsu, K., C. Sanctuary, T. Shibata, A. Shimada, and J. Botsis. Stress-relaxation and microscopic dynamics of rabbit periodontal ligament. J. Biomech. 40:634–644, 2007.

    Article  CAS  PubMed  Google Scholar 

  28. Langerak, S. E., M. Groenink, E. E. van der Wall, C. Wassenaar, E. Vanbavel, M. C. van Baal, and J. A. Spaan. Impact of current cryopreservation procedures on mechanical and functional properties of human aortic homografts. Transpl. Int. 14:248–255, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, M. C., and R. C. Haut. Insensitivity of tensile failure properties of human bridging veins to strain rate: implications in biomechanics of subdural hematoma. J. Biomech. 22:537–542, 1989.

    Article  CAS  PubMed  Google Scholar 

  30. Lowenhielm, P. Dynamic properties of the parasagittal bridging veins. Z. Rechtsmed. 74:55–62, 1974.

    Article  CAS  PubMed  Google Scholar 

  31. Maher, E., M. Early, A. Creane, C. Lally, and D. J. Kelly. Site specific inelasticity of arterial tissue. J. Biomech. 45:1393–1399, 2012.

    Article  PubMed  Google Scholar 

  32. Margulies, S. S., and K. L. Thibault. Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury. J. Biomech. Eng. 122:364–371, 2000.

    Article  CAS  PubMed  Google Scholar 

  33. Martin, R. B. Fatigue microdamage as an essential element of bone mechanics and biology. Calcif. Tissue Int. 73:101–107, 2003.

    Article  CAS  PubMed  Google Scholar 

  34. Masson, I., A. Fialaire-Legendre, C. Godin, P. Boutouyrie, P. Bierling, and M. Zidi. Mechanical properties of arteries cryopreserved at -80 degrees C and -150 degrees C. Med. Eng. Phys. 31:825–832, 2009.

    Article  PubMed  Google Scholar 

  35. Meaney, D. F. Biomechanics of acute subdural hematoma in the subhuman primate and man. In: Bioengineering. Philadelphia, PA: University of Pennsylvania, 1991.

  36. Miller, K. S., L. Edelstein, B. K. Connizzo, and L. J. Soslowsky. Effect of preconditioning and stress relaxation on local collagen fiber re-alignment: inhomogeneous properties of rat supraspinatus tendon. J. Biomech. Eng. 134:031007, 2012.

    Article  PubMed  Google Scholar 

  37. Monea, A. G., K. Baeck, E. Verbeken, I. Verpoest, J. V. Sloten, J. Goffin, and B. Depreitere. The biomechanical behaviour of the bridging vein-superior sagittal sinus complex with implications for the mechanopathology of acute subdural haematoma. J. Mech. Behav. Biomed. Mater. 32:155–165, 2014.

    Article  PubMed  Google Scholar 

  38. Monson, K. L., W. Goldsmith, N. M. Barbaro, and G. T. Manley. Axial mechanical properties of fresh human cerebral blood vessels. J. Biomech. Eng. 125:288–294, 2003.

    Article  PubMed  Google Scholar 

  39. Monson, K. L., W. Goldsmith, N. M. Barbaro, and G. T. Manley. Significance of source and size in the mechanical response of human cerebral blood vessels. J. Biomech. 38:737–744, 2005.

    Article  PubMed  Google Scholar 

  40. Morison C. N. The dynamics of shaken baby syndrome. In: Manufacturing and Mechanical Engineering. Birmingham, UK: University of Birmingham, 2002.

  41. Nadarasa, J., C. Deck, F. Meyer, R. Willinger, and J. S. Raul. Update on injury mechanisms in abusive head trauma–shaken baby syndrome. Pediatr. Radiol. 44(Suppl 4):S565–570, 2014.

    Article  PubMed  Google Scholar 

  42. Pasquesi, S. A. Can vigorous shaking cause extra-axial hemorrhage in newborns? A detailed human and porcine study. In: Bioengineering. Philadelphia, PA: University of Pennsylvania, 2016.

  43. Pasquesi, S., Y. Liu, and S. Margulies. Repeated loading behavior of pediatric porcine common carotid arteries. J. Biomech. Eng., 2016. doi:10.1115/1.4033883.

    PubMed  Google Scholar 

  44. Peris, P. Stress fractures. Best Pract. Res. Clin. Rheumatol. 17:1043–1061, 2003.

    Article  PubMed  Google Scholar 

  45. Prange, M. T., B. Coats, A. C. Duhaime, and S. S. Margulies. Anthropomorphic simulations of falls, shakes, and inflicted impacts in infants. J. Neurosurg. 99:143–150, 2003.

    Article  PubMed  Google Scholar 

  46. Prange, M. T., and S. S. Margulies. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124:244–252, 2002.

    Article  PubMed  Google Scholar 

  47. Pukacki, F., T. Jankowski, M. Gabriel, G. Oszkinis, Z. Krasinski, and S. Zapalski. The mechanical properties of fresh and cryopreserved arterial homografts. Eur. J. Vasc. Endovasc. Surg. 20:21–24, 2000.

    Article  CAS  PubMed  Google Scholar 

  48. Quinn, K. P., and B. A. Winkelstein. Preconditioning is correlated with altered collagen fiber alignment in ligament. J. Biomech. Eng. 133:064506, 2011.

    Article  PubMed  Google Scholar 

  49. Rorke-Adams, L. B. The triad of retinal haemorrhage, subdural haemorrhage and encephalopathy in an infant unassociated with evidence of physical injury is not the result of shaking, but is most likely to have been caused by a natural disease: no. J. Prim. Health Care 3:161–163, 2011.

    PubMed  Google Scholar 

  50. Squier, W. The triad of retinal haemorrhage, subdural haemorrhage and encephalopathy in an infant unassociated with evidence of physical injury is not the result of shaking, but is most likely to have been caused by a natural disease: yes. J. Prim. Health Care 3:159–161, 2011.

    PubMed  Google Scholar 

  51. Stemper, B. D., N. Yoganandan, M. R. Stineman, T. A. Gennarelli, J. L. Baisden, and F. A. Pintar. Mechanics of fresh, refrigerated, and frozen arterial tissue. J. Surg. Res. 139:236–242, 2007.

    Article  PubMed  Google Scholar 

  52. Thibault, K. L., and S. S. Margulies. Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech. 31:1119–1126, 1998.

    Article  CAS  PubMed  Google Scholar 

  53. Warden, S. J., D. B. Burr, and P. D. Brukner. Stress fractures: pathophysiology, epidemiology, and risk factors. Curr. Osteoporos. Rep. 4:103–109, 2006.

    Article  PubMed  Google Scholar 

  54. Yamashima, T., and R. L. Friede. Why do bridging veins rupture into the virtual subdural space? J. Neurol. Neurosurg. Psychiatry 47:121–127, 1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yassi, A. Repetitive strain injuries. Lancet 349:943–947, 1997.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, K., T. Siegmund, and R. W. Chan. Modeling of the transient responses of the vocal fold lamina propria. J. Mech. Behav. Biomed. Mater. 2:93–104, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the families who consented to provide autopsy specimens of their young children for research purposes. We would also like to thank Dr. Lucy Rorke-Adams, Jill Ralston, George Bratinov, and Kevin Browne for their technical assistance procuring vessels. Support was provided by the American Heart Association (12PRE12040315), the National Institutes of Health (R21 HD078842), and the Children’s Hospital of Philadelphia Critical Care Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan S. Margulies.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasquesi, S.A., Margulies, S.S. Failure and Fatigue Properties of Immature Human and Porcine Parasagittal Bridging Veins. Ann Biomed Eng 45, 1877–1889 (2017). https://doi.org/10.1007/s10439-017-1833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1833-5

Keywords

Navigation