Skip to main content

Advertisement

Log in

Proximity of Metastatic Cells Enhances Their Mechanobiological Invasiveness

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A critical step in metastases formation is cancer-cell invasion through tissue. During invasion, cells change morphology and apply forces to their surroundings. We have previously shown that single, metastatic breast-cancer cells will mechanically indent a synthetic, impenetrable polyacrylamide gel with physiological-stiffness in attempted invasion; benign breast cells do not indent the gels. In solid tumors, e.g., breast cancers, metastases occur predominantly by collective cell-invasion. Thus, here we evaluate the effects of cell proximity on mechanical invasiveness, specifically through changes in gel indention. Gel indentation is induced by 56, 33 and 2% (in >1000 cells), respectively, of adjacent high metastatic potential (MP), low MP and benign breast cells, being double the amounts observed in single, well-separated cells. Single cells exhibited a distribution of indentation depths below 10 µm, while adjacent cells also showed a second peak of deeper indentations. The second peak included 65% of indenting high MP cells as compared to 15% in the low MP cells, illustrating the difference in their invasiveness. Thus, proximity of the metastatic cells enhances their mechanical ability to invade, demonstrating why collective cancer-cell migration is likely more efficient. This could potentially provide a rapid, quantitative approach to identify metastatic cells, and to determine their metastatic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Abidine, Y., V. Laurent, R. Michel, A. Duperray, L. I. Palade, and C. Verdier. Physical properties of polyacrylamide gels probed by AFM and rheology. Europhys. Lett. 109:38003, 2015.

    Article  Google Scholar 

  2. Abuhattum, S., A. Gefen, and D. Weihs. Ratio of total traction force to projected cell area is preserved in differentiating adipocytes. Integr. Biol. 7:1212–1217, 2015.

    Article  CAS  Google Scholar 

  3. Acerbi, I., L. Cassereau, I. Dean, Q. Shi, A. Au, C. Park, Y. Y. Chen, J. Liphardt, E. S. Hwang, and V. M. Weaver. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7:1120–1134, 2015.

    Article  CAS  Google Scholar 

  4. Ahearne, M. Introduction to cell-hydrogel mechanosensing. Interface Focus 4:20130038, 2014.

    Google Scholar 

  5. Albini, A., and R. Benelli. The chemoinvasion assay: a method to assess tumor and endothelial cell invasion and its modulation. Nat. Protoc. 2:504–511, 2007.

    Article  CAS  PubMed  Google Scholar 

  6. Albini, A., Y. Iwamoto, H. K. Kleinman, G. R. Martin, S. A. Aaronson, J. M. Kozlowski, and R. N. McEwan. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47:3239–3245, 1987.

    CAS  PubMed  Google Scholar 

  7. Alvarez-Elizondo, M. B., and D. Weihs. Cell-gel mechanical interactions as an approach to rapidly and quantitatively reveal invasive subpopulations of metastatic cancer cells. Tissue Eng. Part C: Methods 2017. doi:10.1089/ten.TEC.2016.0424.

  8. Boudou, T., J. Ohayon, C. Picart, R. I. Pettigrew, and P. Tracqui. Nonlinear elastic properties of polyacrylamide gels: implications for quantification of cellular forces. Biorheology 46:191–205, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Butler, J. P., I. M. Tolic-Norrelykke, B. Fabry, and J. J. Fredberg. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Physiol. 282:C595–C605, 2002.

    Article  CAS  Google Scholar 

  10. Buxboim, A., K. Rajagopal, A. E. X. Brown, and D. E. Discher. How deeply cells feel: methods for thin gels. J. Phys.: Condens. Matter 22(19):194116, 2010.

    Google Scholar 

  11. Califano, J. P., and C. A. Reinhart-King. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3:68–75, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cheung, K. J., E. Gabrielson, Z. Werb, and A. J. Ewald. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155:1639–1651, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clark, A. G., and D. M. Vignjevic. Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 36:13–22, 2015.

    Article  CAS  PubMed  Google Scholar 

  14. Cross, S. E., Y. S. Jin, J. Rao, and J. K. Gimzewski. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2:780–783, 2007.

    Article  CAS  PubMed  Google Scholar 

  15. Delanoe-Ayari, H., J. P. Rieu, and M. Sano. 4D traction force microscopy reveals asymmetric cortical forces in migrating dictyostelium cells. Phys. Rev. Lett. 105:248103, 2010.

    Article  CAS  PubMed  Google Scholar 

  16. Discher, D., C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schonbein, and S. Weinbaum. Biomechanics: cell research and applications for the next decade. Ann. Biomed. Eng. 37:847–859, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dvir, L., R. Nissim, M. B. Alvarez-Elizondo, and D. Weihs. Quantitative measures to reveal coordinated cytoskeleton-nucleus reorganization during in vitro invasion of cancer cells. New J. Phys. 17:43010, 2015.

    Article  Google Scholar 

  18. Edwards, L. J. Modern statistical techniques for the analysis of longitudinal data in biomedical research. Pediatr. Pulmonol. 30:330–344, 2000.

    Article  CAS  PubMed  Google Scholar 

  19. Fidler, I. J. The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur. J. Cancer 9:223–227, 1973.

    Article  CAS  PubMed  Google Scholar 

  20. Friedl, P., Y. Hegerfeldt, and M. Tusch. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol. 48:441–449, 2004.

    Article  CAS  PubMed  Google Scholar 

  21. Friedl, P., J. Locker, E. Sahai, and J. E. Segall. Classifying collective cancer cell invasion. Nat. Cell Biol. 14:777–783, 2012.

    Article  PubMed  Google Scholar 

  22. Friedl, P., and K. Wolf. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3:362–374, 2003.

    Article  CAS  PubMed  Google Scholar 

  23. Friedl, P., and K. Wolf. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res. 68:7247–7249, 2008.

    Article  CAS  PubMed  Google Scholar 

  24. Fu, J., Y. K. Wang, M. T. Yang, R. A. Desai, X. Yu, Z. Liu, and C. S. Chen. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7:733–736, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gal, N., S. Massalha, O. Samuelly-Nafta, and D. Weihs. Effects of particle uptake, encapsulation, and localization in cancer cells on intracellular applications. Med. Eng. Phys. 37:478–483, 2015.

    Article  CAS  PubMed  Google Scholar 

  26. Gal, N., and D. Weihs. Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential. Cell Biochem. Biophys. 63:199–209, 2012.

    Article  CAS  PubMed  Google Scholar 

  27. Giannelli, G., J. Falk-Marzillier, O. Schiraldi, W. G. Stetler-Stevenson, and V. Quaranta. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228, 1997.

    Article  CAS  PubMed  Google Scholar 

  28. Goldstein, D., T. Elhanan, M. Aronovitch, and D. Weihs. Origin of active transport in breast-cancer cells. Soft Matter 9:7167–7173, 2013.

    Article  CAS  Google Scholar 

  29. Gritsenko, P. G., O. Ilina, and P. Friedl. Interstitial guidance of cancer invasion. J. Pathol. 226:185–199, 2012.

    Article  CAS  PubMed  Google Scholar 

  30. Guck, J., S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J . 88:3689–3698, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hur, S. S., Y. H. Zhao, Y. S. Li, E. Botvinick, and S. Chien. Live cells Exert 3-dimensional traction forces on their substrata. Cell. Mol. Bioeng. 2:425–436, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ilina, O., and P. Friedl. Mechanisms of collective cell migration at a glance. J. Cell Sci. 122:3203–3208, 2009.

    Article  CAS  PubMed  Google Scholar 

  33. Indra, I., and K. A. Beningo. An in vitro correlation of metastatic capacity, substrate rigidity, and ECM composition. J. Cell. Biochem. 112:3151–3158, 2011.

    Article  CAS  PubMed  Google Scholar 

  34. Katira, P., R. T. Bonnecaze, and M. H. Zaman. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties. Front Oncol. 3:145, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Koch, T. M., S. Munster, N. Bonakdar, J. P. Butler, and B. Fabry. 3D Traction forces in cancer cell invasion. PLoS ONE 7:e33476, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kraning-Rush, C. M., J. P. Califano, and C. A. Reinhart-King. Cellular traction stresses increase with increasing metastatic potential. PLoS ONE 7:e32572, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krishnan, R., D. D. Klumpers, C. Y. Park, K. Rajendran, X. Trepat, J. van Bezu, V. W. M. van Hinsbergh, C. V. Carman, J. D. Brain, J. J. Fredberg, J. P. Butler, and G. P. V. Amerongen. Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am. J. Physiol. Physiol. 300:C146–C154, 2011.

    Article  CAS  Google Scholar 

  38. Kristal-Muscal, R., L. Dvir, M. Schvartzer, and D. Weihs. Mechanical interaction of metastatic cancer cells with a soft gel. Procedia IUTAM 12:211–219, 2015.

    Article  Google Scholar 

  39. Kristal-Muscal, R., L. Dvir, and D. Weihs. Metastatic cancer cells tenaciously indent impenetrable, soft substrates. New J. Phys. 15:35022, 2013.

    Article  Google Scholar 

  40. Kumar, S., and V. M. Weaver. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28:113–127, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lammermann, T., and M. Sixt. Mechanical modes of “amoeboid” cell migration. Curr. Opin. Cell Biol. 21:636–644, 2009.

    Article  PubMed  Google Scholar 

  42. Lautscham, L. A. A., C. Kammerer, J. R. R. Lange, T. Kolb, C. Mark, A. Schilling, P. L. L. Strissel, R. Strick, C. Gluth, A. C. C. Rowat, C. Metzner, B. Fabry, C. Kämmerer, J. R. R. Lange, T. Kolb, C. Mark, A. Schilling, P. L. L. Strissel, R. Strick, C. Gluth, A. C. C. Rowat, C. Metzner, and B. Fabry. Migration in confined 3D environments is determined by a combination of adhesiveness, nuclear volume, contractility, and cell stiffness. Biophys. J . 109:900–913, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Levental, I., P. C. Georges, and P. A. Janmey. Soft biological materials and their impact on cell function. Soft Matter 3:299–306, 2007.

    Article  CAS  Google Scholar 

  44. Levental, K. R., H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, S. F. Fong, K. Csiszar, A. Giaccia, W. Weninger, M. Yamauchi, D. L. Gasser, and V. M. Weaver. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J . 79:144–152, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maskarinec, S. A., C. Franck, D. A. Tirrell, and G. Ravichandran. Quantifying cellular traction forces in three dimensions. Proc. Natl Acad. Sci. U. S. A. 106:22108–22113, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Massalha, S., and D. Weihs. Metastatic breast cancer cells adhere strongly on varying stiffness substrates, initially without adjusting their morphology. Biomech. Model. Mechanobiol. 2016. doi:10.1007/s10237-016-0864-4.

    PubMed  Google Scholar 

  48. Menon, S., and K. A. Beningo. Cancer cell invasion is enhanced by applied mechanical stimulation. PLoS ONE 6:e17277, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oyen, M. L. Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 59:44–59, 2014.

    Article  CAS  Google Scholar 

  50. Pankova, K., D. Rosel, M. Novotny, and J. Brabek. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 67:63–71, 2010.

    Article  CAS  PubMed  Google Scholar 

  51. Patsialou, A., J. J. Bravo-Cordero, Y. Wang, D. Entenberg, H. Liu, M. Clarke, and J. S. Condeelis. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. Intravital 2:e25294, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pelham, R. J., and Y. L. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. U. S. A. 94:13661–13665, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Raupach, C., D. P. Zitterbart, C. T. Mierke, C. Metzner, F. A. Muller, and B. Fabry. Stress fluctuations and motion of cytoskeletal-bound markers. Phys. Rev. E 76:11918, 2007.

    Article  Google Scholar 

  54. Sahai, E., and C. J. Marshall. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5:711–719, 2003.

    Article  CAS  PubMed  Google Scholar 

  55. Sawicki, W., and S. Moskalewski. Hoechst 33342 staining coupled with conventional histological technique. Stain Technol. 64:191–196, 1989.

    Article  CAS  PubMed  Google Scholar 

  56. Sen, S., A. J. Engler, and D. E. Discher. Matrix strains induced by cells: computing how far cells can feel. Cell. Mol. Bioeng. 2:39–48, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J . 93:4453–4461, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stowers, R. S., S. C. Allen, K. Sanchez, C. L. Davis, N. D. Ebelt, C. Van Den Berg, and L. J. Suggs. Extracellular matrix stiffening induces a malignant phenotypic transition in breast epithelial cells. Cell. Mol. Bioeng. 2016. doi:10.1007/s12195-016-0468-1.

    Google Scholar 

  59. Swaminathan, V., K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71:5075–5080, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Trepat, X., B. Fabry, and J. J. Fredberg. Pulling it together in three dimensions. Nat. Methods 7:963–965, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wagoner Johnson, A., and B. A. Harley. Mechanobiology of Cell–Cell and Cell–Matrix Interactions. New York: Springer, p. 319, 2011.

    Book  Google Scholar 

  62. Weston, S. A., and C. R. Parish. New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy. J. Immunol. Methods 133:87–97, 1990.

    Article  CAS  PubMed  Google Scholar 

  63. Wolf, K., Y. I. Wu, Y. Liu, J. Geiger, E. Tam, C. Overall, M. S. Stack, and P. Friedl. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9:893–904, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Rakefet Rozen for her assistance in analyzing the results. The work was partially supported by The Technion EVPR Funds—The Elias Fund for Medical Research and The Karbeling Fund for Bio-Medical Engineering Research, and also by a grant from the Ministry of Science, Technology and Space, Israel, and the National Science Council (NSC) of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphne Weihs.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1791 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkher, Y., Weihs, D. Proximity of Metastatic Cells Enhances Their Mechanobiological Invasiveness. Ann Biomed Eng 45, 1399–1406 (2017). https://doi.org/10.1007/s10439-017-1814-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1814-8

Keywords

Navigation