Skip to main content
Log in

Fundamental Principles of Tremor Propagation in the Upper Limb

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aisen, M. L., A. Arnold, I. Baiges, S. Maxwell, and M. Rosen. The effect of mechanical damping loads on disabling action tremor. Neurology 43:1346–1350, 1993.

    Article  CAS  PubMed  Google Scholar 

  2. Anouti, A., and W. C. Koller. Tremor disorders. Diagnosis and management. West. J. Med. 162:510, 1995.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Charles, S. K., and N. Hogan. Dynamics of wrist rotations. J. Biomech. 44:614–621, 2011.

    Article  PubMed  Google Scholar 

  4. Charles, S. K., and N. Hogan. Stiffness, not inertial coupling, determines path curvature of wrist motions. J. Neurophysiol. 107:1230–1240, 2012.

    Article  PubMed  Google Scholar 

  5. Colacino, F. M., E. Rustighi, and B. R. Mace. Subject-specific musculoskeletal parameters of wrist flexors and extensors estimated by an EMG-driven musculoskeletal model. Med. Eng. Phys. 34:531–540, 2012.

    Article  PubMed  Google Scholar 

  6. Corke, P. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Berlin: Springer, 2011.

    Book  Google Scholar 

  7. Craig, J. J. Introduction to Robotics. Upper Saddle River, NJ: Pearson Prentice Hall, 2005.

    Google Scholar 

  8. de Leva, P. Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J. Biomech. 29:1223–1230, 1996.

    Article  PubMed  Google Scholar 

  9. De Serres, S. J., and T. E. Milner. Wrist muscle activation patterns and stiffness associated with stable and unstable mechanical loads. Exp. Brain Res. 86:451–458, 1991.

    Article  PubMed  Google Scholar 

  10. de Vlugt, E., S. van Eesbeek, P. Baines, J. Hilte, C. G. M. Meskers, and J. H. de Groot. Short range stiffness elastic limit depends on joint velocity. J. Biomech. 44:2106–2112, 2011.

    Article  PubMed  Google Scholar 

  11. Deuschl, G., P. Bain, M. Brin, and C. Ad. Consensus statement of the movement disorder society on tremor. Ad Hoc Scientific Committee. Mov. Disord. 13:2–23, 1998.

    Article  PubMed  Google Scholar 

  12. Dijkstra E. J. Upper limb project. In: Mechanical Engineering, University of Twente, 2010.

  13. Dolan, J. M., M. B. Friedman, and M. L. Nagurka. Dynamic and loaded impedance components in the maintenance of human arm posture. IEEE Trans. Syst. Man Cybern. 23:698–709, 1993.

    Article  Google Scholar 

  14. Drake, W. B., and S. K. Charles. Passive Stiffness of Coupled Wrist and Forearm Rotations. Ann. Biomed. Eng. 42:1853–1866, 2014.

    Article  PubMed  Google Scholar 

  15. Elble, R. J. Physiologic and essential tremor. Neurology 36:225–231, 1986.

    Article  CAS  PubMed  Google Scholar 

  16. Elble, R. J., and G. Deuschl. An update on essential tremor. Curr. Neurol. Neurosci. Rep. 9:273–277, 2009.

    Article  PubMed  Google Scholar 

  17. Gallego, J. Á., E. Rocon, J. M. Belda-Lois, and J. L. Pons. A neuroprosthesis for tremor management through the control of muscle co-contraction. J. Neuroeng. Rehabil. 10:1–13, 2013.

    Article  Google Scholar 

  18. Goldstein, H., C. Poole, and J. Safko. Classical Mechanics. San Francisco, CA: Addison Wesley, 2002.

    Google Scholar 

  19. Gomi, H., and R. Osu. Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J. Neurosci. 18:8965–8978, 1998.

    CAS  PubMed  Google Scholar 

  20. Halaki, M., N. O’Dwyer, and I. Cathers. Systematic nonlinear relations between displacement amplitude and joint mechanics at the human wrist. J. Biomech. 39:2171–2182, 2006.

    Article  PubMed  Google Scholar 

  21. Hellwig, B., S. Haussler, B. Schelter, M. Lauk, B. Guschlbauer, J. Timmer, and C. H. Lucking. Tremor-correlated cortical activity in essential tremor. Lancet 357:519–523, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Heroux, M. E., G. Pari, and K. E. Norman. The effect of contraction intensity on force fluctuations and motor unit entrainment in individuals with essential tremor. Clin. Neurophysiol. 121:233–239, 2010.

    Article  CAS  PubMed  Google Scholar 

  23. Hewer, R. L., R. Cooper, and M. H. Morgan. An investigation into the value of treating intention tremor by weighting the affected limb. Brain 95:579–590, 1972.

    Article  CAS  PubMed  Google Scholar 

  24. Hogan, N. The mechanics of multi-joint posture and movement control. Biol. Cybern. 52:315–331, 1985.

    Article  CAS  PubMed  Google Scholar 

  25. Hu, X., W. M. Murray, and E. J. Perreault. Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm. J. Neurophysiol. 105:1633–1641, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Klomp, A., J. H. de Groot, E. de Vlugt, C. G. M. Meskers, J. H. Arendzen, and F. C. T. van der Helm. perturbation amplitude affects linearly estimated neuromechanical wrist joint properties. IEEE Trans. Biomed. Eng. 61:1005–1014, 2014.

    Article  PubMed  Google Scholar 

  27. Lakie, M., E. G. Walsh, and G. W. Wright. Passive wrist movements—thixotropy—measurement of memory time. J. Physiol. Lond. 346:P6–P6, 1984.

    Google Scholar 

  28. Lakie, M., C. A. Vernooij, T. M. Osborne, and R. F. Reynolds. The resonant component of human physiological hand tremor is altered by slow voluntary movements. J. Physiol. 590:2471–2483, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lakie, M., C. Vernooij, C. Osler, A. Stevenson, J. Scott, and R. Reynolds. Increased gravitational force reveals the mechanical, resonant nature of physiological tremor. J. Physiol. 593:4411–4422, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levine, W. S. The Control Handbook: Control System Fundamentals. Boca Raton: CRC Press, 2010.

    Google Scholar 

  31. Lipps, D. B., E. M. Baillargeon, D. Ludvig, and E. J. Perreault. System identification of multidimensional shoulder impedance during volitional contractions. IFAC-PapersOnLine 48:1369–1374, 2015.

    Article  Google Scholar 

  32. Ma, H.-I., W.-J. Hwang, P.-L. Tsai, and Y.-W. Hsu. The effect of eating utensil weight on functional arm movement in people with Parkinson’s disease: a controlled clinical trial. Clin. Rehabil. 23:1086–1092, 2009.

    Article  PubMed  Google Scholar 

  33. Mann, K. A., F. W. Werner, and A. K. Palmer. Frequency-spectrum analysis of wrist motion for activities of daily living. J. Orthop. Res. 7:304–306, 1989.

    Article  CAS  PubMed  Google Scholar 

  34. Meshack, R. P., and K. E. Norman. A randomized controlled trial of the effects of weights on amplitude and frequency of postural hand tremor in people with Parkinson’s disease. Clin. Rehabil. 16:481–492, 2002.

    Article  PubMed  Google Scholar 

  35. Palm, W. System Dynamics. New York, NY: McGraw Hill, 2014.

    Google Scholar 

  36. Pando, A. L., H. Lee, W. B. Drake, N. Hogan, and S. K. Charles. Position-Dependent Characterization of Passive Wrist Stiffness. IEEE Trans. Biomed. Eng. 61:2235–2244, 2014.

    Article  PubMed  Google Scholar 

  37. Peaden, A. W., and S. K. Charles. Dynamics of wrist and forearm rotations. J. Biomech. 47:2779–2785, 2014.

    Article  PubMed  Google Scholar 

  38. Perreault, E. J., R. F. Kirsch, and P. E. Crago. Effects of voluntary force generation on the elastic components of endpoint stiffness. Exp. Brain Res. 141:312–323, 2001.

    Article  CAS  PubMed  Google Scholar 

  39. Perreault, E. J., R. F. Kirsch, and P. E. Crago. Multijoint dynamics and postural stability of the human arm. Exp. Brain Res. 157:507–517, 2004.

    Article  PubMed  Google Scholar 

  40. Rocon, E., J. M. Belda-Lois, J. J. Sanchez-Lacuesta, and J. L. Pons. Pathological tremor management: Modelling, compensatory technology and evaluation. Technol. Disabil. 16:3–18, 2004.

    Google Scholar 

  41. Salmond L. H., A. D. Davidson, and S. K. Charles. Proximal–distal differences in movement smoothness reflect differences in biomechanics (in review).

  42. Seegmiller, D., and S. K. Charles. Common wrist orthoses and their effects on the stiffness of wrist rotations. J. Rehabil. Res. Dev. 53, 2017 (in press).

  43. Sinkjaer, T., and R. Hayashi. Regulation of wrist stiffness by the stretch reflex. J. Biomech. 22:1133–1140, 1989.

    Article  CAS  PubMed  Google Scholar 

  44. Spong, M. W., S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control. Hoboken, NJ: Wiley, 2006.

    Google Scholar 

  45. Tsuji, T., P. G. Morasso, K. Goto, and K. Ito. Human hand impedance characteristics during maintained posture. Biol. Cybern. 72:475–485, 1995.

    Article  CAS  PubMed  Google Scholar 

  46. Zesiewicz, T. A., R. Elble, E. D. Louis, R. A. Hauser, K. L. Sullivan, R. B. Dewey, W. G. Ondo, G. S. Gronseth, and W. J. Weiner. Practice parameter: therapies for essential tremor—report of the quality standards subcommittee of the American Academy of Neurology. Neurology 64:2008–2020, 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SK Charles and AD Davidson received financial support from NIH Grant R15NS087447, Quantitative Characterization of Essential Tremor for Future Tremor Suppression.

Conflict of Interest

SK Charles is a scientific advisor to, and holds stock in, Vykon Technologies LLC. This company has licensed technology invented by SK Charles to develop markerless monitoring of movement disorders, including tremor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven K. Charles.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidson, A.D., Charles, S.K. Fundamental Principles of Tremor Propagation in the Upper Limb. Ann Biomed Eng 45, 1133–1147 (2017). https://doi.org/10.1007/s10439-016-1765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1765-5

Keywords

Navigation