Skip to main content
Log in

Transcatheter Valve Underexpansion Limits Leaflet Durability: Implications for Valve-in-Valve Procedures

  • The Pursuit of Engineering the Ideal Heart Valve Replacement or Repair
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Transcatheter aortic valve (TAV) implantation within a failed bioprosthetic valve is a growing trend for high-risk patients. The non-compliant stent of the previous prosthesis may prevent full expansion of the TAV, which has been shown to distort the leaflet configuration, and has been hypothesized to adversely affect durability. In this study, TAV leaflet fatigue damage under cyclic pressurization in the setting of stent underexpansion by 0 (fully expanded), 1, 2 and 3 mm was simulated using finite element analysis to test this hypothesis. In the 2 and 3 mm underexpanded devices, the TAV leaflets exhibited severe pin-wheeling during valve closure, which increased leaflet stresses dramatically, and resulted in accelerated fatigue damage of the leaflets. The leaflet fatigue damage in the 1 mm underexpanded case was similar to that in the fully expanded case. Clinically a range of 10–15% underexpansion is generally considered acceptable; however, it was observed in this study that ≥2 mm (≥9.1%) underexpansion, will significantly impact device durability. Further study is necessary to determine the impact of various deployment conditions, i.e. non-uniform and non-circular deployments and different implantation heights, on differing TAV devices, but it is clear that the normal TAV leaflet configuration must be preserved in order to preserve durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abbasi, M., and A. N. Azadani. Leaflet stress and strain distributions following incomplete transcatheter aortic valve expansion. J. Biomech. 48:3663–3671, 2015.

    Article  PubMed  Google Scholar 

  2. Azadani, A. N., and E. E. Tseng. Transcatheter heart valves for failing bioprostheses: state-of-the-art review of valve-in-valve implantation. Circ. Cardiovasc. Interv. 4:621–628, 2011.

    Article  PubMed  Google Scholar 

  3. Bruschi, G., L. Botta, P. Fratto, and L. Martinelli. Failed valve-in-valve transcatheter mitral valve implantation. Eur. J. Cardiothorac. Surg. 45:e127, 2014.

    Article  PubMed  Google Scholar 

  4. Butany, J., V. Nair, S. W. Leong, G. S. Soor, and C. Feindel. Carpentier-Edwards Perimount valves—morphological findings in surgical explants. J. Card. Surg. 22:7–12, 2007.

    Article  PubMed  Google Scholar 

  5. Chen, H. L., and K. Liu. Clinical outcomes for transcatheter valve-in-valve in treating surgical bioprosthetic dysfunction: a meta-analysis. Int. J. Cardiol. 212:138–141, 2016.

    Article  PubMed  Google Scholar 

  6. Chevalier, F., J. Leipsic, and P. Genereux. Valve-in-valve implantation with a 23-mm balloon-expandable transcatheter heart valve for the treatment of a 19-mm stentless bioprosthesis severe aortic regurgitation using a strategy of “extreme” underfilling. Catheter. Cardiovasc. Interv. 84:503–508, 2014.

    Article  PubMed  Google Scholar 

  7. Corden, J., T. David, and J. Fisher. Determination of the curvatures and bending strains in open trileaflet heart valves. Proc. Inst. Mech. Eng. Part H 209:121–128, 1995.

    Article  CAS  Google Scholar 

  8. Cribier, A., H. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, F. Anselme, F. Laborde, and M. B. Leon. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106:3006–3008, 2002.

    Article  PubMed  Google Scholar 

  9. Dorfmann, A., and R. W. Ogden. A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41:1855–1878, 2004.

    Article  Google Scholar 

  10. Dvir D., H. Eltchaninoff, J. Ye, A. Kan, E. Durand, A. Bizios, A. Cheung, M. Aziz, M. Simonato, C. Tron, Y. Arbel, R. Moss, J. Leipsic, H. Ofek, G. Perlman, M. Barbanti, M. A. Seidman, P. Blanke, R. Yao, R. Boone, S. Lauck, S. Lichtenstein, D. Wood, A. Cribier, and J. G. Webb. First look at long-term durability of transcatheter heart valves: assessment of valve function up to 10-years after implantation. In: Euro PCR 2016, Paris, France, 2016.

  11. Dvir, D., J. G. Webb, S. Bleiziffer, M. Pasic, R. Waksman, S. Kodali, M. Barbanti, A. Latib, U. Schaefer, J. Rodes-Cabau, H. Treede, N. Piazza, D. Hildick-Smith, D. Himbert, T. Walther, C. Hengstenberg, H. Nissen, R. Bekeredjian, P. Presbitero, E. Ferrari, A. Segev, A. de Weger, S. Windecker, N. E. Moat, M. Napodano, M. Wilbring, A. G. Cerillo, S. Brecker, D. Tchetche, T. Lefevre, F. De Marco, C. Fiorina, A. S. Petronio, R. C. Teles, L. Testa, J. C. Laborde, M. B. Leon, R. Kornowski, and I. Valve-in-Valve International Data Registry. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA 312:162–170, 2014.

    Article  CAS  PubMed  Google Scholar 

  12. Faerber, G., S. Schleger, M. Diab, M. Breuer, H. Figulla, W. Eichinger, and T. Doenst. Valve-in-valve transcatheter aortic valve implantation: the new playground for prothesis-patient mismatch. J. Interv. Cardiol. 27:287–292, 2014.

    Article  PubMed  Google Scholar 

  13. Gunning, P. S., N. Saikrishnan, A. P. Yoganathan, and L. M. McNamara. Total ellipse of the heart valve: the impact of eccentric stent distortion on the regional dynamic deformation of pericardial tissue leaflets of a transcatheter aortic valve replacement. J. R. Soc. Interface 12:20150737, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gunning, P. S., T. J. Vaughan, and L. M. McNamara. Simulation of self expanding transcatheter aortic valve in a realistic aortic root: implications of deployment geometry on leaflet deformation. Ann. Biomed. Eng. 42:1989–2001, 2014.

    Article  PubMed  Google Scholar 

  15. Gurvitch, R., A. Cheung, J. Ye, D. A. Wood, A. B. Willson, S. Toggweiler, R. Binder, and J. G. Webb. Transcatheter valve-in-valve implantation for failed surgical bioprosthetic valves. J. Am. Coll. Cardiol. 58:2196–2209, 2011.

    Article  PubMed  Google Scholar 

  16. Harbaoui, B., P. Y. Courand, Z. Schmitt, F. Farhat, R. Dauphin, and P. Lantelme. Early Edwards SAPIEN valve degeneration after transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 9:198–199, 2016.

    Article  PubMed  Google Scholar 

  17. Himbert, D., F. Pontnau, D. Messika-Zeitoun, F. Descoutures, D. Détaint, C. Cueff, M. Sordi, J.-P. Laissy, S. Alkhoder, E. Brochet, B. Iung, J.-P. Depoix, P. Nataf, and A. Vahanian. Feasibility and outcomes of transcatheter aortic valve implantation in high-risk patients with stenotic bicuspid aortic valves. Am. J. Cardiol. 110:877–883, 2012.

    Article  PubMed  Google Scholar 

  18. John, D., L. Buellesfeld, S. Yuecel, R. Mueller, G. Latsios, H. Beucher, U. Gerckens, and E. Grube. Correlation of device landing zone calcification and acute procedural success in patients undergoing transcatheter aortic valve implantations with the self-expanding CoreValve prosthesis. JACC Cardiovasc. Interv. 3:233–243, 2010.

    Article  PubMed  Google Scholar 

  19. Kiefer, P., J. Seeburger, M. W. Chu, J. Ender, M. Vollroth, T. Noack, F. W. Mohr, and D. M. Holzhey. Reoperative transapical aortic valve implantation for early structural valve deterioration of a SAPIEN XT valve. Ann. Thorac. Surg. 95:2169–2170, 2013.

    Article  PubMed  Google Scholar 

  20. Klotz, S., M. Scharfschwerdt, D. Richardt, and H. H. Sievers. Failed valve-in-valve transcatheter aortic valve implantation. JACC Cardiovasc. Interv. 5:591–592, 2012.

    Article  PubMed  Google Scholar 

  21. Koos, R., A. H. Mahnken, G. Dohmen, K. Brehmer, R. W. Günther, R. Autschbach, N. Marx, and R. Hoffmann. Association of aortic valve calcification severity with the degree of aortic regurgitation after transcatheter aortic valve implantation. Int. J. Cardiol. 150:142–145, 2011.

    Article  PubMed  Google Scholar 

  22. Leber, A. W., M. Kasel, T. Ischinger, U. H. Ebersberger, D. Antoni, M. Schmidt, G. Riess, V. Renz, A. Huber, T. Helmberger, and E. Hoffmann. Aortic valve calcium score as a predictor for outcome after TAVI using the CoreValve revalving system. Int. J. Cardiol. 166:652–657, 2013.

    Article  PubMed  Google Scholar 

  23. Leon, M. B., C. R. Smith, M. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. Tuzcu, J. G. Webb, G. P. Fontana, R. R. Makkar, D. L. Brown, P. C. Block, R. A. Guyton, A. D. Pichard, J. E. Bavaria, H. C. Herrmann, P. S. Douglas, J. L. Petersen, J. J. Akin, W. N. Anderson, D. Wang, and S. Pocock. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363:1597–1607, 2010.

    Article  CAS  PubMed  Google Scholar 

  24. Martin, C., and W. Sun. Comparison of transcatheter aortic valve and surgical bioprosthetic valve durability: a fatigue simulation study. J. Biomech. 48:3026–3034, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martin, C., and W. Sun. Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects. Biomech. Model. Mechanobiol. 12:645–655, 2013.

    Article  PubMed  Google Scholar 

  26. Martin, C., and W. Sun. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties. Biomech. Model. Mechanobiol. 13:759–770, 2014.

    Article  PubMed  Google Scholar 

  27. Milburn, K., V. Bapat, and M. Thomas. Valve-in-valve implantations: is this the new standard for degenerated bioprostheses? Review of the literature. Clin. Res. Cardiol. 103:1–13, 2014.

    Article  Google Scholar 

  28. Muñoz-García, A. J., J. H. Alonso-Briales, M. F. Jiménez-Navarro, J. Caballero-Borrego, A. J. Domínguez-Franco, I. Rodríguez-Bailón, M. Such-Martínez, J. M. Hernández-García, and E. de Teresa-Galván. Mechanisms, treatment and course of paravalvular aortic regurgitation after percutaneous implantation of the CoreValve aortic prosthesis. Int. J. Cardiol. 149:389–392, 2011.

    Article  PubMed  Google Scholar 

  29. Perlman, G. Y., P. Blanke, D. Dvir, G. Pache, T. Modine, M. Barbanti, E. W. Holy, H. Treede, P. Ruile, F.-J. Neumann, C. Gandolfo, F. Saia, C. Tamburino, G. Mak, C. Thompson, D. Wood, J. Leipsic, and J. G. Webb. Bicuspid aortic valve stenosis: favorable early outcomes with a next-generation transcatheter heart valve in a multicenter study. JACC Cardiovasc. Interv. 9:817–824, 2016.

    Article  PubMed  Google Scholar 

  30. Schoen, F. J., J. Fernandez, L. Gonzalez-Lavin, and A. Cernaianu. Causes of failure and pathologic findings in surgically removed Ionescu-Shiley standard bovine pericardial heart valve bioprostheses: emphasis on progressive structural deterioration. Circulation 76:618–627, 1987.

    Article  CAS  PubMed  Google Scholar 

  31. Schoen, F. J., and R. J. Levy. Tissue heart valves: current challenges and future research perspectives. J. Biomed. Mater. Res. 47:439–465, 1999.

    Article  CAS  PubMed  Google Scholar 

  32. Schultz, C. J., A. Weustink, N. Piazza, A. Otten, N. Mollet, G. Krestin, R. J. van Geuns, P. de Feyter, P. W. J. Serruys, and P. de Jaegere. Geometry and degree of apposition of the CoreValve ReValving system with multislice computed tomography after implantation in patients with aortic stenosis. J. Am. Coll. Cardiol. 54:911–918, 2009.

    Article  PubMed  Google Scholar 

  33. Shalabi, A., D. Spiegelstein, L. Sternik, M. S. Feinberg, A. Kogan, S. Levin, B. Orlov, E. Nachum, A. Lipey, and E. Raanani. Sutureless versus stented valve in aortic valve replacement in patients with small annulus. Ann. Thorac. Surg. 102:118–122, 2016.

    Article  PubMed  Google Scholar 

  34. Simo, J. C. On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60:153–173, 1987.

    Article  Google Scholar 

  35. Simonato, M., J. Webb, R. Kornowski, A. Vahanian, C. Frerker, H. Nissen, S. Bleiziffer, A. Duncan, J. Rodes-Cabau, G. F. Attizzani, E. Horlick, A. Latib, R. Bekeredjian, M. Barbanti, T. Lefevre, A. Cerillo, J. M. Hernandez, G. Bruschi, K. Spargias, A. Iadanza, S. Brecker, J. H. Palma, A. Finkelstein, M. Abdel-Wahab, P. Lemos, A. S. Petronio, D. Champagnac, J. M. Sinning, S. Salizzoni, M. Napodano, C. Fiorina, A. Marzocchi, M. Leon, and D. Dvir. Transcatheter replacement of failed bioprosthetic valves: large multicenter assessment of the effect of implantation depth on hemodynamics after aortic valve-in-valve. Circ. Cardiovasc. Interv. 9:e003651, 2016.

    Article  PubMed  Google Scholar 

  36. Singhal, P., A. Luk, and J. Butany. Bioprosthetic heart valves: impact of implantation on biomaterials. ISRN Biomater. 2013:1–14, 2013.

    Article  Google Scholar 

  37. Smuts, A. N., D. C. Blaine, C. Scheffer, H. Weich, A. F. Doubell, and K. H. Dellimore. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. J. Mech. Behav. Biomed. Mater. 4:85–98, 2011.

    Article  CAS  PubMed  Google Scholar 

  38. Sun W. Biomechanical simulations of heart valve biomaterials. In: Department of Bioengineering. Pittsburgh: University of Pittsburgh, 2003, p. 240.

  39. Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127:905–914, 2005.

    Article  PubMed  Google Scholar 

  40. Sun, W., E. L. Chaikof, and M. E. Levenston. Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models. J. Biomech. Eng. 130:061003, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun, W., K. Li, and E. Sirois. Simulated elliptical bioprosthetic valve deformation: Implications for asymmetric transcatheter valve deployment. J. Biomech. 43:3085–3090, 2010.

    Article  PubMed  Google Scholar 

  42. Trowbridge, E. A., and C. E. Crofts. Pericardial heterograft valves: an assessment of leaflet stresses and their implications for heart valve design. J. Biomech. Eng. 9:345–355, 1987.

    Article  CAS  Google Scholar 

  43. Vesely, I. The influence of design on bioprosthetic valve durability. J. Long-Term Eff. Med. Implant. 11:13, 2001.

    Article  Google Scholar 

  44. Watanabe, Y., B. Chevalier, K. Hayashida, T. Leong, E. Bouvier, T. Arai, A. Farge, T. Hovasse, P. Garot, B. Cormier, M.-C. Morice, and T. Lefèvre. Comparison of multislice computed tomography findings between bicuspid and tricuspid aortic valves before and after transcatheter aortic valve implantation. Catheter. Cardiovasc. Interv. 86:323–330, 2015.

    Article  PubMed  Google Scholar 

  45. Webb, J. G., and D. Dvir. Transcatheter aortic valve replacement for bioprosthetic aortic valve failure: the valve-in-valve procedure. Circulation 127:2542–2550, 2013.

    Article  PubMed  Google Scholar 

  46. Webb, J. G., D. A. Wood, J. Ye, R. Gurvitch, J.-B. Masson, J. Rodés-Cabau, M. Osten, E. Horlick, O. Wendler, E. Dumont, R. G. Carere, N. Wijesinghe, F. Nietlispach, M. Johnson, C. R. Thompson, R. Moss, J. Leipsic, B. Munt, S. V. Lichtenstein, and A. Cheung. Transcatheter valve-in-valve implantation for failed bioprosthetic heart valves. Circulation 121:1848–1857, 2010.

    Article  PubMed  Google Scholar 

  47. Willson, A., J. Webb, T. LaBounty, S. Achenbach, R. Moss, M. Wheeler, C. Thompson, J. Min, R. Gurvitch, B. Norgard, S. Toggweiler, R. K. Binder, C. Hague, M. Freeman, S. H. Poulter, R. Poulter, D. Wood, and L. Jonathon. Three-dimensional aortic annular assessment by multidetector computed tomography predicts moderate or severe paravalvular regurgitation after transcatheter aortic valve replacement: a multicenter retrospective analysis. J. Am. Coll. Cardiol. 59:E325, 2012.

    Article  Google Scholar 

  48. Willson, A. B., J. G. Webb, R. Gurvitch, D. A. Wood, S. Toggweiler, R. Binder, M. Freeman, M. Madden, C. Hague, and J. Leipsic. Structural integrity of balloon-expandable stents after transcatheter aortic valve replacement: assessment by multidetector computed tomography. JACC Cardiovasc. Interv. 5:525–532, 2012.

    Article  PubMed  Google Scholar 

  49. Zegdi, R., V. Ciobotaru, M. Noghin, G. Sleilaty, A. Lafont, C. Latrémouille, A. Deloche, and J.-N. Fabiani. Is it reasonable to treat all calcified stenotic aortic valves with a valved stent?: Results from a human anatomic study in adults. J. Am. Coll. Cardiol. 51:579–584, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research for this project was funded in part by NIH HL104080 and HL108240 grants and a NIH F31 HL112632 predoctoral fellowship.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, C., Sun, W. Transcatheter Valve Underexpansion Limits Leaflet Durability: Implications for Valve-in-Valve Procedures. Ann Biomed Eng 45, 394–404 (2017). https://doi.org/10.1007/s10439-016-1738-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1738-8

Keywords

Navigation