Skip to main content
Log in

Alginate Sulfate–Nanocellulose Bioinks for Cartilage Bioprinting Applications

  • Additive Manufacturing of Biomaterials, Tissues, and Organs
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

One of the challenges of bioprinting is to identify bioinks which support cell growth, tissue maturation, and ultimately the formation of functional grafts for use in regenerative medicine. The influence of this new biofabrication technology on biology of living cells, however, is still being evaluated. Recently we have identified a mitogenic hydrogel system based on alginate sulfate which potently supports chondrocyte phenotype, but is not printable due to its rheological properties (no yield point). To convert alginate sulfate to a printable bioink, it was combined with nanocellulose, which has been shown to possess very good printability. The alginate sulfate/nanocellulose ink showed good printing properties and the non-printed bioink material promoted cell spreading, proliferation, and collagen II synthesis by the encapsulated cells. When the bioink was printed, the biological performance of the cells was highly dependent on the nozzle geometry. Cell spreading properties were maintained with the lowest extrusion pressure and shear stress. However, extruding the alginate sulfate/nanocellulose bioink and chondrocytes significantly compromised cell proliferation, particularly when using small diameter nozzles and valves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Almeida, C. R., T. Serra, M. I. Oliveira, J. A. Planell, M. A. Barbosa, and M. Navarro. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater. 10:613–622, 2014.

    Article  CAS  PubMed  Google Scholar 

  2. Arlov, O., F. L. Aachmann, E. Feyzi, A. Sundan, and G. Skjak-Braek. The impact of chain length and flexibility in the interaction between sulfated alginates and HGF and FGF-2. Biomacromolecules 16:3417–3424, 2015.

    Article  CAS  PubMed  Google Scholar 

  3. Arlov, O., F. L. Aachmann, A. Sundan, T. Espevik, and G. Skjak-Braek. Heparin-like properties of sulfated alginates with defined sequences and sulfation degrees. Biomacromolecules 15:2744–2750, 2014.

    Article  CAS  PubMed  Google Scholar 

  4. Chang, R., J. Nam, and W. Sun. Direct cell writing of 3d microorgan for in vitro pharmacokinetic model. Tissue Eng. Part C 14:157–166, 2008.

    Article  CAS  Google Scholar 

  5. Chang, R., J. Nam, and W. Sun. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A 14:41–48, 2008.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, F. H., K. T. Rousche, and R. S. Tuan. Technology insight: adult stem cells in cartilage regeneration and tissue engineering. Nat. Clin. Pract. Rheumatol. 2:373–382, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Freeman, I., A. Kedem, and S. Cohen. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29:3260–3268, 2008.

    Article  CAS  PubMed  Google Scholar 

  8. Jakob, M., O. Demarteau, D. Schafer, B. Hintermann, W. Dick, M. Heberer, and I. Martin. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J. Cell. Biochem. 81:368–377, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Jungst, T., W. Smolan, K. Schacht, T. Scheibel, and J. Groll. Strategies and molecular design criteria for 3d printable hydrogels. Chem. Rev. 116(3):1496–1539, 2015.

    Article  PubMed  Google Scholar 

  10. Kesti, M., M. Muller, J. Becher, M. Schnabelrauch, M. D’Este, D. Eglin, and M. Zenobi-Wong. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater. 11:162–172, 2015.

    Article  CAS  PubMed  Google Scholar 

  11. Khalil, S., and W. Sun. Bioprinting endothelial cells with alginate for 3d tissue constructs. J. Biomech. Eng. 131:111002, 2009.

    Article  PubMed  Google Scholar 

  12. Klein, T. J., S. C. Rizzi, K. Schrobback, J. C. Reichert, J. E. Jeon, R. W. Crawford, and D. W. Hutmacher. Long-term effects of hydrogel properties on human chondrocyte behavior. Soft Matter 6:5175–5183, 2010.

    Article  CAS  Google Scholar 

  13. Madry, H., A. Rey-Rico, J. K. Venkatesan, B. Johnstone, and M. Cucchiarini. Transforming growth factor beta-releasing scaffolds for cartilage tissue engineering. Tissue Eng. Part B 20:106–125, 2013.

    Article  Google Scholar 

  14. Malda, J., J. Visser, F. P. Melchels, T. Jungst, W. E. Hennink, W. J. A. Dhert, J. Groll, and D. W. Hutmacher. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.

    Article  CAS  PubMed  Google Scholar 

  15. Markstedt, K., A. Mantas, I. Tournier, and H. Martinez. Avila, D. Hagg and P. Gatenholm. 3d bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496, 2015.

    Article  CAS  PubMed  Google Scholar 

  16. Melchels, F. P. W., W. J. A. Dhert, D. W. Hutmacher, and J. Malda. Development and characterisation of a new bioink for additive tissue manufacturing. J. Mater. Chem. B 2:2282–2289, 2014.

    Article  CAS  Google Scholar 

  17. Mhanna, R., A. Kashyap, G. Palazzolo, Q. Vallmajo-Martin, J. Becher, S. Moller, M. Schnabelrauch, and M. Zenobi-Wong. Chondrocyte culture in three dimensional alginate sulfate hydrogels promotes proliferation while maintaining expression of chondrogenic markers. Tissue Eng. Part A 20:1454–1464, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muller, M., J. Becher, M. Schnabelrauch, and M. Zenobi-Wong. Nanostructured pluronic hydrogels as bioinks for 3d bioprinting. Biofabrication 7:035006, 2015.

    Article  PubMed  Google Scholar 

  19. Owczarczak, A. B., S. O. Shuford, S. T. Wood, S. Deitch, and D. Dean. Creating transient cell membrane pores using a standard inkjet printer. J. Vis. Expo 2012. doi:10.3791/3681.

    Google Scholar 

  20. Öztürk, E., Ø. Arlov, S. Aksel, L. Li, D. M. Ornitz, G. Skjåk-Bræk, and M. Zenobi-Wong. Sulfated hydrogel matrices direct mitogenicity and maintenance of chondrocyte phenotype through activation of fgf signaling. Adv. Funct. Mater. 26:3649–3662, 2016.

    Article  Google Scholar 

  21. Snyder, J., A. R. Son, Q. Hamid, C. Y. Wang, Y. G. Lui, and W. Sun. Mesenchymal stem cell printing and process regulated cell properties. Biofabrication 7(4):044106, 2015.

    Article  PubMed  Google Scholar 

  22. Song, S. J., J. Choi, Y. D. Park, J. J. Lee, S. Y. Hong, and K. Sun. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization. Artif. Organs 34:1044–1048, 2010.

    Article  PubMed  Google Scholar 

  23. Spiller, K. L., Y. Liu, J. L. Holloway, S. A. Maher, Y. Cao, W. Liu, G. Zhou, and A. M. Lowman. A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels: controlled release for cartilage tissue engineering. J. Controlled Release 157:39–45, 2012.

    Article  CAS  Google Scholar 

  24. Wust, S., M. E. Godla, R. Muller, and S. Hofmann. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 10:630–640, 2014.

    Article  CAS  PubMed  Google Scholar 

  25. Wust, S., R. Muller, and S. Hofmann. Controlled positioning of cells in biomaterials-approaches towards 3d tissue printing. Journal of functional biomaterials 2:119–154, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu, T., J. Jin, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing of viable mammalian cells. Biomaterials 26:93–99, 2005.

    Article  PubMed  Google Scholar 

  27. Zhao, Y., Y. Li, S. S. Mao, W. Sun, and R. Yao. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3d cell printing technology. Biofabrication 7:045002, 2015.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by ETH Research Grant ETH-23 14-1, the Swiss National Foundation (315230_159783 and 315230_143667), FIFA/F-MARC and EU program Eureka and Vinnova. The authors acknowledge support of the Scientific Center for Optical and Electron Microscopy (ScopeM) of ETH Zurich. The II-II6B3 col 2 antibody developed by T.F. Linsenmayer and the proteoglycan hyaluronic acid-binding region antibody (12/21/1-C-6) developed by B. Caterson were obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at The University of Iowa, Department of Biology, Iowa City, IA 52242. We also thank Daniel Hägg, Theo Kalogeropoulus, Hector Martinez and Athanasios Mantas for their help with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcy Zenobi-Wong.

Additional information

Associate Editor Amir Abbas Zadpoor oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (PDF 1286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, M., Öztürk, E., Arlov, Ø. et al. Alginate Sulfate–Nanocellulose Bioinks for Cartilage Bioprinting Applications. Ann Biomed Eng 45, 210–223 (2017). https://doi.org/10.1007/s10439-016-1704-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1704-5

Keywords

Navigation