Skip to main content

Advertisement

Log in

In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants

  • Additive Manufacturing of Biomaterials, Tissues, and Organs
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 vol.% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague–Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Asaoka, K., N. Kuwayama, O. Okuno, et al. Mechanical properties and biomechanical compatibility of porous titanium for dental implants. J. Biomed. Mater. Res. 19(6):699–713, 1985.

    Article  CAS  PubMed  Google Scholar 

  2. ASTM Standard F2792-12a. Standard Terminology for Additive Manufacturing Technologies. West Conshohocken, PA: ASTM International, 2012, doi:10.1520/F2792-12A, http://www.astm.org.

  3. Balla, V. K., W. Xue, S. Bose, et al. Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures. Acta Biomater. 4(3):697–706, 2008.

    Article  Google Scholar 

  4. Balla, V. K., W. Xue, S. Bose, et al. Engineered porous metals for implants. JOM 60(5):45–48, 2008.

    Article  Google Scholar 

  5. Bandyopadhyay, A., V. K. Balla, W. Xue, et al. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. J. Mater. Sci. Mater. Med. 20(1):29–34, 2009.

    Article  Google Scholar 

  6. Beaupied, H., E. Lespessailles, and C. L. Benhamou. Evaluation of macrostructural bone biomechanics. Joint Bone Spine 74(3):233–239, 2007.

    Article  PubMed  Google Scholar 

  7. Bjursten, L. M., L. Rasmusson, S. Oh, et al. Titanium dioxide nanotubes enhance bone bonding in vivo. J. Biomed. Mater. Res. Part A 92(3):1218–1224, 2010.

    Google Scholar 

  8. Bobyn, J. D., G. J. Stackpool, S. A. Hacking, et al. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone Joint Surg. Br. 81(5):907–914, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. Bontha, S., N. W. Klingbeil, P. A. Kobryn, et al. Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures. J. Mater. Process. Technol. 178(1–3):135–142, 2006.

    Article  CAS  Google Scholar 

  10. Bose, S., and A. Bandyopadhyay. Introduction to biomaterials. In: Characterization of Biomaterials, edited by A. Bandyopadhyay, and S. Bose. Waltham: Elsevier, 2013, pp. 1–9.

    Chapter  Google Scholar 

  11. Bose, S., S. Tarafder, S. Banerjee, et al. Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2 doped β-TCP. Bone 48(6):1282–1290, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brammer, K. S., S. Oh, C. J. Cobb, et al. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 5(8):3215–3223, 2009.

    Article  CAS  PubMed  Google Scholar 

  13. Brånemark, R., L. O. Öhrnell, P. Nilsson, et al. Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat. Biomaterials 18(14):969–978, 1997.

    Article  PubMed  Google Scholar 

  14. Burstein, A. H., D. T. Reilly, and M. Martens. Aging of bone tissue: mechanical properties. J. Bone Joint Surg. 58(1):82–86, 1976.

    Article  CAS  PubMed  Google Scholar 

  15. Collins, P. C., R. Banerjee, S. Banerjee, et al. Laser deposition of compositionally graded titanium–vanadium and titanium–molybdenum alloys. Mater. Sci. Eng. A 352(1):118–128, 2003.

    Article  Google Scholar 

  16. Cornell, C. N., and J. M. Lane. Current understanding of osteoconduction in bone regeneration. Clin. Orthop. 1(suppl. 355S):267–273, 1998.

    Article  Google Scholar 

  17. Das, K., V. K. Balla, A. Bandyopadhyay, et al. Surface modification of laser-processed porous titanium for load-bearing implants. Scripta Mater. 59(8):822–825, 2008.

    Article  CAS  Google Scholar 

  18. Das, K., S. Bose, and A. Bandyopadhyay. Surface modifications and cell–materials interactions with anodized Ti. Acta Biomater. 3(4):573–585, 2007.

    Article  CAS  PubMed  Google Scholar 

  19. Das, K., S. Bose, and A. Bandyopadhyay. TiO2 nanotubes on Ti: influence of nanoscale morphology on bone cell–materials interaction. J. Biomed. Mater. Res. Part A 90(1):225–237, 2009.

    Article  Google Scholar 

  20. Fujibayashi, S., M. Neo, H. M. Kim, T. Kokubo, et al. Osteoinduction of porous bioactive titanium metal. Biomaterials 25(3):443–450, 2004.

    Article  CAS  PubMed  Google Scholar 

  21. Hing, K. A., S. M. Best, K. E. Tanner, et al. Quantification on bone ingrowth within bone-derived porous hydroxyapatite implants of varying density. J. Mater. Sci. Mater. Med. 10(11):663–670, 1999.

    Article  CAS  PubMed  Google Scholar 

  22. Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491, 2005.

    Article  CAS  PubMed  Google Scholar 

  23. Krishna, B. V., S. Bose, and A. Bandyopadhyay. Low stiffness porous Ti structures for load-bearing implants. Acta Biomater. 3(6):997–1006, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Li, J. P., P. Habibovic, M. Van den Doel, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28(18):2810–2820, 2007.

    Article  CAS  PubMed  Google Scholar 

  25. Liebschner, M. A. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 25(9):1697–1714, 2004.

    Article  CAS  PubMed  Google Scholar 

  26. Lopez-Heredia, M. A., E. Goyenvalle, E. Aguado, et al. Bone growth in rapid prototyped porous titanium implants. J. Biomed. Mater. Res. Part A 85(3):664–673, 2008.

    Article  CAS  Google Scholar 

  27. Mullen, L., R. C. Stamp, W. K. Brooks, et al. Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J. Biomed. Mater. Res. B Appl. Biomater. 89(2):325–334, 2009.

    Article  PubMed  Google Scholar 

  28. Nishiguchi, S., H. Kato, H. Fujita, et al. Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials 22(18):2525–2533, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Oh, I. H., N. Nomura, N. Masahashi, et al. Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Mater. 49(12):1197–1202, 2003.

    Article  CAS  Google Scholar 

  30. Otsuki, B., M. Takemoto, S. Fujibayashi, et al. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27(35):5892–5900, 2006.

    Article  CAS  PubMed  Google Scholar 

  31. Pilliar, R. M. Porous-surfaced metallic implants for orthopedic applications. J. Biomed. Mater. Res. 21(A1 Suppl):1–33, 1987.

    CAS  PubMed  Google Scholar 

  32. Ryan, G., A. Pandit, and D. P. Apatsidis. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27(13):2651–2670, 2006.

    Article  CAS  PubMed  Google Scholar 

  33. Shivaram, A., S. Bose, and A. Bandyopadhyay. Thermal degradation of TiO2 nanotubes on titanium. Appl. Surf. Sci. 317:573–580, 2014.

    Article  CAS  Google Scholar 

  34. Shivaram, A., S. Bose, and A. Bandyopadhyay. Damage evaluation of TiO2 nanotubes on titanium. Biomater. Sci. 254:117, 2015.

    Google Scholar 

  35. Staiger, M. P., M. P. Alexis, H. Jerawala, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734, 2006.

    Article  CAS  PubMed  Google Scholar 

  36. Thieme, M., K. P. Wieters, F. Bergner, et al. Titanium powder sintering for preparation of a porous FGM destined as a skeletal replacement implant. Mater. Sci. Forum 308:374, 1999.

    Article  Google Scholar 

  37. Traini, T., C. Mangano, R. L. Sammons, F. Mangano, A. Macchi, and A. Piattelli. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent. Mater. 24(11):1525–1533, 2008.

    Article  CAS  PubMed  Google Scholar 

  38. Xue, W., V. K. Balla, A. Bandyopadhyay, and S. Bose. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 3(6):1007–1018, 2007.

    Article  CAS  PubMed  Google Scholar 

  39. Yamada, H., and F. G. Evans. Strength of Biological Materials. Baltimore, MD: Williams and Wilkins, 1970.

    Google Scholar 

  40. Yavari, S. A., J. van der Stok, Y. C. Chai, et al. Bone regeneration performance of surface-treated porous titanium. Biomaterials 35(24):6172–6181, 2014.

    Article  Google Scholar 

  41. Yue, S., R. M. Pilliar, and G. C. Weatherly. The fatigue strength of porous-coated Ti–6% Al–4% V implant alloy. J. Biomed. Mater. Res. 18(9):1043–1058, 1984.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Scanco USA, Inc. for their help with high resolution micro CT experiment and analysis. Research reported in this publication was also supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers R01 AR067306-01A1 and R01 AR066361-01A1. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Bandyopadhyay.

Additional information

Associate Editor Amir Abbas Zadpoor oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, A., Shivaram, A., Tarafder, S. et al. In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants. Ann Biomed Eng 45, 249–260 (2017). https://doi.org/10.1007/s10439-016-1673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1673-8

Keywords

Navigation