Skip to main content
Log in

Two- and Three-Dimensional All-Carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine

  • Emerging Trends in Biomaterials Research
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Carbon nanomaterials such as carbon nanotubes and graphene have gained significant interest in the fields of materials science, electronics and biomedicine due to their interesting physiochemical properties. Typically these carbon nanomaterials have been dispersed in polymeric matrices at low concentrations to improve the functional properties of nanocomposites employed as two-dimensional (2D) substrates or three-dimensional (3D) porous scaffolds for tissue engineering applications. There has been a growing interest in the assembly of these nanomaterials into 2D and 3D architectures without the use of polymeric matrices, surfactants or binders. In this article, we review recent advances in the development of 2D or 3D all-carbon assemblies using carbon nanotubes or graphene as nanoscale building-block biomaterials for tissue engineering and regenerative medicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Aryaei, A., A. H. Jayatissa, and A. C. Jayasuriya. The effect of graphene substrate on osteoblast cell adhesion and proliferation. J. Biomed. Mater. Res. Part A 102(9):3282–3290, 2014.

    Article  Google Scholar 

  2. Bhunia, S. K., A. Saha, A. R. Maity, S. C. Ray, and N. R. Jana. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 3:1473, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boyan, B. D., T. W. Hummert, D. D. Dean, and Z. Schwartz. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17(2):137–146, 1996.

    Article  CAS  PubMed  Google Scholar 

  4. Buser, D., R. Schenk, S. Steinemann, J. Fiorellini, C. Fox, and H. Stich. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J. Biomed. Mater. Res. 25(7):889–902, 1991.

    Article  CAS  PubMed  Google Scholar 

  5. Cassell, A. M., J. A. Raymakers, J. Kong, and H. Dai. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103(31):6484–6492, 1999.

    Article  CAS  Google Scholar 

  6. Cellot, G., E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, and D. Scaini. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol. 4(2):126–133, 2009.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, F., W. Lam, C. Lin, G. Qiu, Z. Wu, K. Luk, and W. Lu. Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J. Biomed. Mater. Res. B 82(1):183–191, 2007.

    Article  CAS  Google Scholar 

  8. Chen, H., M. B. Müller, K. J. Gilmore, G. G. Wallace, and D. Li. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20(18):3557–3561, 2008.

    Article  CAS  Google Scholar 

  9. Chen, Z., W. Ren, L. Gao, B. Liu, S. Pei, and H.-M. Cheng. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6):424–428, 2011.

    Article  CAS  PubMed  Google Scholar 

  10. Chowdhury, S. M., G. Lalwani, K. Zhang, J. Y. Yang, K. Neville, and B. Sitharaman. Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials 34(1):283–293, 2013.

    Article  PubMed Central  Google Scholar 

  11. Correa-Duarte, M. A., N. Wagner, J. Rojas-Chapana, C. Morsczeck, M. Thie, and M. Giersig. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett. 4(11):2233–2236, 2004.

    Article  CAS  Google Scholar 

  12. Crowder, S. W., D. Prasai, R. Rath, D. A. Balikov, H. Bae, K. I. Bolotin, and H.-J. Sung. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dikin, D. A., S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff. Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Du, D., Y. Yang, and Y. Lin. Graphene-based materials for biosensing and bioimaging. MRS Bull. 37(12):1290–1296, 2012.

    Article  CAS  Google Scholar 

  15. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  16. Fabbro, A., A. Villari, J. Laishram, D. Scaini, F. M. Toma, A. Turco, M. Prato, and L. Ballerini. Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs. ACS Nano 6(3):2041–2055, 2012.

    Article  CAS  PubMed  Google Scholar 

  17. Fan, L., C. Feng, W. Zhao, L. Qian, Y. Wang, and Y. Li. Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate. Nano Lett. 12(7):3668–3673, 2012.

    Article  CAS  PubMed  Google Scholar 

  18. Farshid, B., G. Lalwani, and B. Sitharaman. In vitro cytocompatibility of one-dimensional and two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites. J. Biomed. Mater. Res. Part A 103(7):2309–2321, 2015.

    Article  CAS  Google Scholar 

  19. Feng, L., S. Zhang, and Z. Liu. Graphene based gene transfection. Nanoscale 3(3):1252–1257, 2011.

    Article  CAS  PubMed  Google Scholar 

  20. Gähwiler, B. Organotypic cultures of neural tissue. Trends Neurosci. 11(11):484–489, 1988.

    Article  PubMed  Google Scholar 

  21. Geng, H.-Z., K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, and Y. H. Lee. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129(25):7758–7759, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Goenka, S., V. Sant, and S. Sant. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173:75–88, 2014.

    Article  CAS  PubMed  Google Scholar 

  23. Green, D. E., J. P. Longtin, and B. Sitharaman. The effect of nanoparticle-enhanced photoacoustic stimulation on multipotent marrow stromal cells. ACS Nano 3(8):2065–2072, 2009.

    Article  CAS  PubMed  Google Scholar 

  24. Griffith, L. G., and G. Naughton. Tissue engineering–current challenges and expanding opportunities. Science 295(5557):1009–1014, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. Harada, S.-I., and G. A. Rodan. Control of osteoblast function and regulation of bone mass. Nature 423(6937):349–355, 2003.

    Article  CAS  PubMed  Google Scholar 

  26. Harrison, B. S., and A. Atala. Carbon nanotube applications for tissue engineering. Biomaterials 28(2):344–353, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. Hong, D., K. Bae, S. Yoo, K. Kang, B. Jang, J. Kim, S. Kim, S. Jeon, Y. Nam, and Y. G. Kim. Generation of cellular micropatterns on a single-layered graphene film. Macromol. Biosci. 14(3):314–319, 2014.

    Article  CAS  PubMed  Google Scholar 

  28. Jang, E. Y., T. J. Kang, H. W. Im, D. W. Kim, and Y. H. Kim. Single-walled carbon-nanotube networks on large-area glass substrate by the dip-coating method. Small 4(12):2255–2261, 2008.

    Article  CAS  PubMed  Google Scholar 

  29. Kanakia, S., J. D. Toussaint, S. M. Chowdhury, G. Lalwani, T. Tembulkar, T. Button, K. R. Shroyer, W. Moore, and B. Sitharaman. Physicochemical characterization of a novel graphene-based magnetic resonance imaging contrast agent. Int. J. Nanomed. 8:2821, 2013.

    Google Scholar 

  30. Kim, K. S., Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710, 2009.

    Article  CAS  PubMed  Google Scholar 

  31. Kostarelos, K., A. Bianco, and M. Prato. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol. 4(10):627–633, 2009.

    Article  CAS  PubMed  Google Scholar 

  32. Kotchey, G. P., B. L. Allen, H. Vedala, N. Yanamala, A. A. Kapralov, Y. Y. Tyurina, J. Klein-Seetharaman, V. E. Kagan, and A. Star. The enzymatic oxidation of graphene oxide. ACS Nano 5(3):2098–2108, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kroustalli, A. A., S. N. Kourkouli, and D. D. Deligianni. Cellular function and adhesion mechanisms of human bone marrow mesenchymal stem cells on multi-walled carbon nanotubes. Ann. Biomed. Eng. 41(12):2655–2665, 2013.

    Article  PubMed  Google Scholar 

  34. Ku, S. H., M. Lee, and C. B. Park. Carbon-based nanomaterials for tissue engineering. Adv. Healthc. Mater. 2(2):244–260, 2013.

    Article  CAS  PubMed  Google Scholar 

  35. Ku, S. H., and C. B. Park. Myoblast differentiation on graphene oxide. Biomaterials 34(8):2017–2023, 2013.

    Article  CAS  PubMed  Google Scholar 

  36. Lalwani, G., X. Cai, L. Nie, L. V. Wang, and B. Sitharaman. Graphene-based contrast agents for photoacoustic and thermoacoustic tomography. Photoacoustics 1(3):62–67, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lalwani, G., A. Gopalan, M. D’Agati, J. Srinivas Sankaran, S. Judex, Y. X. Qin, and B. Sitharaman. Porous three dimensional carbon nanotube scaffolds for tissue engineering. J. Biomed. Mater. Res. Part A 103(10):3212–3225, 2015.

    Article  CAS  Google Scholar 

  38. Lalwani, G., A. M. Henslee, B. Farshid, L. Lin, F. K. Kasper, Y.-X. Qin, A. G. Mikos, and B. Sitharaman. Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules 14(3):900–909, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lalwani, G., A. M. Henslee, B. Farshid, P. Parmar, L. Lin, Y.-X. Qin, F. K. Kasper, A. G. Mikos, and B. Sitharaman. Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering. Acta Biomater. 9(9):8365–8373, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lalwani, G., A. T. Kwaczala, S. Kanakia, S. C. Patel, S. Judex, and B. Sitharaman. Fabrication and characterization of three-dimensional macroscopic all-carbon scaffolds. Carbon 2013(53):90–100, 2013.

    Article  Google Scholar 

  41. Lalwani, G., and B. Sitharaman. Multifunctional fullerene-and metallofullerene-based nanobiomaterials. Nano LIFE 3(3):1342003, 2013.

    Article  Google Scholar 

  42. Lalwani, G., J. L. Sundararaj, K. Schaefer, T. Button, and B. Sitharaman. Synthesis, characterization, in vitro phantom imaging, and cytotoxicity of a novel graphene-based multimodal magnetic resonance imaging-X-ray computed tomography contrast agent. J. Mater. Chem. B 2(22):3519–3530, 2014.

    Article  CAS  Google Scholar 

  43. Lalwani, G., W. Xing, and B. Sitharaman. Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. J. Mater. Chem. B 2(37):6354–6362, 2014.

    Article  CAS  Google Scholar 

  44. Lee, W. C., C. H. Y. X. Lim, H. Shi, L. A. L. Tang, Y. Wang, C. T. Lim, and K. P. Loh. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9):7334–7341, 2011.

    Article  CAS  PubMed  Google Scholar 

  45. Li, X., W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314, 2009.

    Article  CAS  PubMed  Google Scholar 

  46. Li, C., and G. Shi. Three-dimensional graphene architectures. Nanoscale 4(18):5549–5563, 2012.

    Article  CAS  PubMed  Google Scholar 

  47. Li, N., Q. Zhang, S. Gao, Q. Song, R. Huang, L. Wang, L. Liu, J. Dai, M. Tang, and G. Cheng. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep. 3:1604, 2013.

    PubMed  PubMed Central  Google Scholar 

  48. Liu, J., L. Cui, and D. Losic. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9(12):9243–9257, 2013.

    Article  CAS  PubMed  Google Scholar 

  49. López-Dolado, E., A. González-Mayorga, M. T. Portolés, M. J. Feito, M. L. Ferrer, F. del Monte, M. C. Gutiérrez, and M. C. Serrano. Subacute tissue response to 3D graphene oxide scaffolds implanted in the injured rat spinal cord. Adv. Healthc. Mater. 4(12):1861–1868, 2015.

    Article  PubMed  Google Scholar 

  50. Lysaght, M. J., and J. Reyes. The growth of tissue engineering. Tissue Eng. 7(5):485–493, 2001.

    Article  CAS  PubMed  Google Scholar 

  51. McKay, W. F., S. M. Peckham, and J. M. Badura. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). Int. Orthop. 31(6):729–734, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mirri, F., A. W. Ma, T. T. Hsu, N. Behabtu, S. L. Eichmann, C. C. Young, D. E. Tsentalovich, and M. Pasquali. High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 6(11):9737–9744, 2012.

    Article  CAS  PubMed  Google Scholar 

  53. National Institutes of Health (NIH). Fact Sheet—Regenerative Medicine. 2010.

  54. Nayak, T. R., H. Andersen, V. S. Makam, C. Khaw, S. Bae, X. Xu, P.-L. R. Ee, J.-H. Ahn, B. H. Hong, G. Pastorin, and B. Özyilmaz. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678, 2011.

    Article  CAS  PubMed  Google Scholar 

  55. Nayak, T. R., L. Jian, L. C. Phua, H. K. Ho, Y. Ren, and G. Pastorin. Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS Nano 4(12):7717–7725, 2010.

    Article  CAS  PubMed  Google Scholar 

  56. Ng, S., J. Wang, Z. Guo, J. Chen, G. Wang, and H. K. Liu. Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta 51(1):23–28, 2005.

    Article  CAS  Google Scholar 

  57. Park, S. Y., J. Park, S. H. Sim, M. G. Sung, K. S. Kim, B. H. Hong, and S. Hong. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 23(36):H263–H267, 2011.

    Article  CAS  PubMed  Google Scholar 

  58. Patel, S. C., G. Lalwani, K. Grover, Y.-X. Qin, and B. Sitharaman. Fabrication and cytocompatibility of in situ crosslinked carbon nanomaterial films. Sci. Rep. 5:10261, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Patel, S. C., S. Lee, G. Lalwani, C. Suhrland, S. M. Chowdhury, and B. Sitharaman. Graphene-based platforms for cancer therapeutics. Ther. Deliv. 7(2):101–116, 2016.

    Article  CAS  PubMed  Google Scholar 

  60. Pham, V. H., T. V. Cuong, S. H. Hur, E. W. Shin, J. S. Kim, J. S. Chung, and E. J. Kim. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 48(7):1945–1951, 2010.

    Article  CAS  Google Scholar 

  61. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147, 1999.

    Article  CAS  PubMed  Google Scholar 

  62. Pryzhkova, M. V., I. Aria, Q. Cheng, G. M. Harris, X. Zan, M. Gharib, and E. Jabbarzadeh. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials 35(19):5098–5109, 2014.

    Article  CAS  PubMed  Google Scholar 

  63. Puleo, D., and A. Nanci. Understanding and controlling the bone–implant interface. Biomaterials 20(23):2311–2321, 1999.

    Article  CAS  PubMed  Google Scholar 

  64. Serrano, M. C., J. Patiño, C. García-Rama, M. L. Ferrer, J. Fierro, A. Tamayo, J. E. Collazos-Castro, F. del Monte, and M. C. Gutierrez. 3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth. J. Mater. Chem. B 2(34):5698–5706, 2014.

    Article  CAS  Google Scholar 

  65. Shen, H., L. Zhang, M. Liu, and Z. Zhang. Biomedical applications of graphene. Theranostics 2(3):283, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shvedova, A. A., A. A. Kapralov, W. H. Feng, E. R. Kisin, A. R. Murray, R. R. Mercer, C. M. St Croix, M. A. Lang, S. C. Watkins, and N. V. Konduru. Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS ONE 7(3):e30923, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Song, Y. I., G. Y. Kim, H. K. Choi, H. J. Jeong, K. K. Kim, C. M. Yang, S. C. Lim, K. H. An, K. T. Jung, and Y. H. Lee. Fabrication of carbon nanotube field emitters using a dip-coating method. Chem. Vap. Depos. 12(6):375–379, 2006.

    Article  CAS  Google Scholar 

  68. Spotnitz, M. E., D. Ryan, and H. A. Stone. Dip coating for the alignment of carbon nanotubes on curved surfaces. J. Mater. Chem. 14(8):1299–1302, 2004.

    Article  CAS  Google Scholar 

  69. Suk, J. W., A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924, 2011.

    Article  CAS  PubMed  Google Scholar 

  70. Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872, 2007.

    Article  CAS  PubMed  Google Scholar 

  71. Tu, Q., L. Pang, Y. Chen, Y. Zhang, R. Zhang, B. Lu, and J. Wang. Effects of surface charges of graphene oxide on neuronal outgrowth and branching. Analyst 139(1):105–115, 2014.

    Article  CAS  PubMed  Google Scholar 

  72. Veetil, J. V., and K. Ye. Tailored carbon nanotubes for tissue engineering applications. Biotechnol. Prog. 25(3):709–721, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Verfaillie, C. Pluripotent stem cells. Transfus. Clin. Biol. 16(2):65–69, 2009.

    Article  CAS  PubMed  Google Scholar 

  74. Wang, X., L. Zhi, and K. Müllen. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1):323–327, 2008.

    Article  CAS  PubMed  Google Scholar 

  75. Wojtek, T., C. Manish, and S. Federico. The chemical and physical characteristics of single-walled carbon nanotube film impact on osteoblastic cell response. Nanotechnology 21(31):315102, 2010.

    Article  Google Scholar 

  76. Wu, Z., Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, and A. F. Hebard. Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276, 2004.

    Article  CAS  PubMed  Google Scholar 

  77. Xing, W., G. Lalwani, I. Rusakova, and B. Sitharaman. Degradation of graphene by hydrogen peroxide. Part. Part. Syst. Charact. 31(7):745–750, 2014.

    Article  CAS  Google Scholar 

  78. Xu, Y., G. Shi, and X. Duan. Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc. Chem. Res. 48(6):1666–1675, 2015.

    Article  CAS  PubMed  Google Scholar 

  79. Yang, K., S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10(9):3318–3323, 2010.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, L., and T. J. Webster. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4(1):66–80, 2009.

    Article  CAS  Google Scholar 

  81. Zhao, Y., B. L. Allen, and A. Star. Enzymatic degradation of multiwalled carbon nanotubes. J. Phys. Chem. A 115(34):9536–9544, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zuk, P. A., M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim, and M. H. Hedrick. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13(12):4279–4295, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaurav Lalwani or Balaji Sitharaman.

Additional information

Gaurav Lalwani and Sunny C. Patel have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalwani, G., Patel, S.C. & Sitharaman, B. Two- and Three-Dimensional All-Carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine. Ann Biomed Eng 44, 2020–2035 (2016). https://doi.org/10.1007/s10439-016-1623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1623-5

Keywords

Navigation