Skip to main content

Advertisement

Log in

Augmenting Surgery via Multi-scale Modeling and Translational Systems Biology in the Era of Precision Medicine: A Multidisciplinary Perspective

  • Multi-Scale Modeling in the Clinic
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this era of tremendous technological capabilities and increased focus on improving clinical outcomes, decreasing costs, and increasing precision, there is a need for a more quantitative approach to the field of surgery. Multiscale computational modeling has the potential to bridge the gap to the emerging paradigms of Precision Medicine and Translational Systems Biology, in which quantitative metrics and data guide patient care through improved stratification, diagnosis, and therapy. Achievements by multiple groups have demonstrated the potential for (1) multiscale computational modeling, at a biological level, of diseases treated with surgery and the surgical procedure process at the level of the individual and the population; along with (2) patient-specific, computationally-enabled surgical planning, delivery, and guidance and robotically-augmented manipulation. In this perspective article, we discuss these concepts, and cite emerging examples from the fields of trauma, wound healing, and cardiac surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

ABM:

Agent-based models

CABG:

Coronary artery bypass grafting

CT:

Computed tomography

DAMP:

Damage-associated molecular pattern

ECM:

Extracellular matrix

ED:

End-diastole

EDV:

End-diastolic volume

ESV:

End-systolic volume

LV:

Left ventricular

ODE:

Ordinary differential equation

PDE:

Partial differential equation

PDGF:

Platelet-derived group factor

pCT:

Preoperative CT

pMR:

Preoperative magnetic resonance imaging [MRI]

PUABM:

Pressure ulcer ABM

SVR:

Surgical ventricular restoration

TGF-β1:

Transforming growth factor-β1

References

  1. Aghvami, M., V. H. Barocas, and E. A. Sander. Multiscale mechanical simulations of cell compacted collagen gels. J. Biomech. Eng. 135:71004, 2013.

    Article  PubMed  Google Scholar 

  2. Altamar, H. O., R. E. Ong, C. L. Glisson, D. P. Viprakasit, M. I. Miga, S. D. Herrell, and R. L. Galloway. Kidney deformation and intraprocedural registration: a study of elements of image-guided kidney surgery. J. Endourol. 25:511–517, 2011.

    Article  PubMed  Google Scholar 

  3. Alterovitz, R., K. Goldberg, J. Pouliot, I. C. J. Hsu, Y. Kim, S. M. Noworolski, and J. Kurhanewicz. Registration of MR prostate images with biomechanical modeling and nonlinear parameter estimation. Med. Phys. 33:446–454, 2006.

    Article  PubMed  Google Scholar 

  4. An, G. C. Translational systems biology using an agent-based approach for dynamic knowledge representation: an evolutionary paradigm for biomedical research. Wound Rep. Reg. 18:8–12, 2010.

    Article  Google Scholar 

  5. An, G., J. Faeder, and Y. Vodovotz. Translational systems biology: introduction of an engineering approach to the pathophysiology of the burn patient. J. Burn Care Res. 29:277–285, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  6. An, G., Q. Mi, J. Dutta-Moscato, A. Solovyev, and Y. Vodovotz. Agent-based models in translational systems biology. WIRES 1:159–171, 2009.

    CAS  Google Scholar 

  7. An, G., and Y. Vodovotz. Translational Systems Biology: Concepts and Practice for the Future of Biomedical Research. New York: Elsevier, 2014.

    Google Scholar 

  8. Arciero, J. C., Q. Mi, M. F. Branca, D. J. Hackam, and D. Swigon. Continuum model of collective cell migration in wound healing and colony expansion. Biophys. J. 100:535–543, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ayton, G. S., W. G. Noid, and G. A. Voth. Multiscale modeling of biomolecular systems: in serial and in parallel. Curr. Opin. Struct. Biol. 17:192–198, 2007.

    Article  CAS  PubMed  Google Scholar 

  10. Baldock, A. L., R. C. Rockne, A. D. Boone, M. L. Neal, A. Hawkins-Daarud, D. M. Corwin, C. A. Bridge, L. A. Guyman, A. D. Trister, M. M. Mrugala, J. K. Rockhill, and K. R. Swanson. From patient-specific mathematical neuro-oncology to precision medicine. Front Oncol. 3:62, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Belfiore, M., and M. Pennisi. In silico modeling of the immune system: cellular and molecular scale approaches. Biomed. Res. Int. 2014:371809, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brock, K. K., L. A. Dawson, M. B. Sharpe, D. J. Moseley, and D. A. Jaffray. Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 64:1245–1254, 2006.

    Article  PubMed  Google Scholar 

  13. Butson, C. R., S. E. Cooper, J. M. Henderson, and C. C. McIntyre. Patient-speciftic analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34:661–670, 2007.

    Article  PubMed  Google Scholar 

  14. Chen, I., A. M. Coffey, S. Y. Ding, P. Dumpuri, B. M. Dawant, R. C. Thompson, and M. I. Miga. Intraoperative brain shift compensation: accounting for dural septa. IEEE Trans. Biomed. Eng. 58:499–508, 2011.

    Article  PubMed  Google Scholar 

  15. Chen, C. C., M. I. Miga, and R. L. Galloway, Jr. Optimizing electrode placement using finite-element models in radiofrequency ablation treatment planning. IEEE Trans. Biomed. Eng. 56:237–245, 2009.

    Article  PubMed  Google Scholar 

  16. Chiang, J., S. Birla, M. Bedoya, D. Jones, J. Subbiah, and C. L. Brace. Modeling and validation of microwave ablations with internal vaporization. IEEE Trans. Biomed. Eng. 62:657–663, 2015.

    Article  PubMed  Google Scholar 

  17. Christley, S., B. Lee, X. Dai, and Q. Nie. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms. BMC Syst. Biol. 4:107, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cleary, K., and T. M. Peters. Image-guided interventions: technology review and clinical applications. Annu. Rev. Biomed. Eng. 12:119–142, 2010.

    Article  CAS  PubMed  Google Scholar 

  19. Clements, L. W., W. C. Chapman, B. M. Dawant, R. L. Galloway, and M. I. Miga. Robust surface registration using salient anatomical features for image-guided liver surgery: algorithm and validation. Med. Phys. 35:2528–2540, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Collins, T. C., J. Daley, W. H. Henderson, and S. F. Khuri. Risk factors for prolonged length of stay after major elective surgery. Ann. Surg. 230:251–259, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Conley, R. H., I. M. Meszoely, J. A. Weis, T. S. Pheiffer, L. R. Arlinghaus, T. E. Yankeelov, and M. I. Miga. Realization of a biomechanical model assisted image guidance system for breast cancer surgery using supine MRI. Int J CARS 10:1985–1996, 2015.

    Article  Google Scholar 

  22. Dallon, J. C. Multiscale modeling of cellular systems in biology. Curr. Opin. Colloid Interface Sci. 15:24–31, 2010.

    Article  CAS  Google Scholar 

  23. Dallon, J. C., J. A. Sherratt, and P. K. Maini. Mathematical modelling of extracellular matrix dynamics using discrete cells: fiber orientation and tissue regeneration. J. Theor. Biol. 199:449–471, 1999.

    Article  CAS  PubMed  Google Scholar 

  24. De Jesus, A. M., M. Aghvami, and E. A. Sander. A combined in vitro imaging and multi-scale modeling system for studying the role of cell matrix interactions in cutaneous wound healing. PLoS One 11(2):e0148254, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. De Jesus, A. M., and E. A. Sander. Observing and quantifying fibroblast-mediated fibrin gel compaction. J. Vis. Exp. 83:e50918, 2014.

    PubMed  Google Scholar 

  26. Dick, T. E., Y. Molkov, G. Nieman, Y. Hsieh, F. J. Jacono, J. Doyle, J. Scheff, S. E. Calvano, I. P. Androulakis, G. An, and Y. Vodovotz. Linking inflammation and cardiorespiratory variability in sepsis via computational modeling. Front Physiol. 3:222, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dimaio, S., T. Kapur, K. Cleary, S. Aylward, P. Kazanzides, K. Vosburgh, R. Ellis, J. Duncan, K. Farahani, H. Lemke, T. Peters, W. B. Lorensen, D. Gobbi, J. Haller, L. L. Clarke, S. Pizer, R. Taylor, R. Galloway, Jr, G. Fichtinger, N. Hata, K. Lawson, C. Tempany, R. Kikinis, and F. Jolesz. Challenges in image-guided therapy system design. Neuroimage 37(Suppl 1):S144–S151, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dokukina, I. V., and M. E. Gracheva. A model of fibroblast motility on substrates with different rigidities. Biophys. J. 98:2794–2803, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dorsett-Martin, W. A. Rat models of skin wound healing: a review. Wound. Repair Regen. 12:591–599, 2004.

    Article  PubMed  Google Scholar 

  30. Dumpuri, P., R. C. Thompson, B. M. Dawant, A. Cao, and M. I. Miga. An atlas-based method to compensate for brain shift: preliminary results. Med. Image Anal. 11:128–145, 2007.

    Article  PubMed  Google Scholar 

  31. Duscher, D., Z. N. Maan, V. W. Wong, R. C. Rennert, M. Januszyk, M. Rodrigues, M. Hu, A. J. Whitmore, A. J. Whittam, M. T. Longaker, and G. C. Gurtner. Mechanotransduction and fibrosis. J. Biomech. 47:1997–2005, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dutta-Moscato, J., A. Solovyev, Q. Mi, T. Nishikawa, A. Soto-Gutierrez, I. J. Fox, and Y. Vodovotz. A multiscale agent-based in silico model of liver fibrosis progression. Front. Bioeng. Biotechnol. 2:1–10, 2014.

    Article  Google Scholar 

  33. Edgar, L. T., S. C. Sibole, C. J. Underwood, J. E. Guilkey, and J. A. Weiss. A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation. Comput. Methods Biomech. Biomed. Eng. 16:790–801, 2013.

    Article  Google Scholar 

  34. Eming, S. A. Biology of wound healing. In: Dermatology, edited by J. L. Bolognia, J. L. Jorizzo, and J. V. Schaffer. Philadephia: Elsevier Saunders, 2012.

    Google Scholar 

  35. Evans, N. D., R. O. Oreffo, E. Healy, P. J. Thurner, and Y. H. Man. Epithelial mechanobiology, skin wound healing, and the stem cell niche. J. Mech. Behav. Biomed. Mater. 28:397–409, 2013.

    Article  PubMed  Google Scholar 

  36. Faeder, J. R. Toward a comprehensive language for biological systems. BMC Biol. 9:68, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Foteinou, P. T., S. E. Calvano, S. F. Lowry, and I. P. Androulakis. Translational potential of systems-based models of inflammation. Clin. Transl. Sci. 2:85–89, 2009.

    Article  CAS  PubMed  Google Scholar 

  38. Garcia, P. A., J. H. Rossmeisl, R. E. Neal, T. L. Ellis, and R. V. Davalos. A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed. Eng. Online 10:21, 2011.

    Article  Google Scholar 

  39. Gill, S., P. Abolmaesumi, G. Fichtinger, J. Boisvert, D. Pichora, D. Borshneck, and P. Mousavi. Biomechanically constrained groupwise ultrasound to CT registration of the lumbar spine. Med. Image Anal. 16:662–674, 2012.

    Article  PubMed  Google Scholar 

  40. Go, A. S., D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, S. Dai, E. S. Ford, C. S. Fox, S. Franco, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, M. D. Huffman, S. E. Judd, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, R. H. Mackey, D. J. Magid, G. M. Marcus, A. Marelli, D. B. Matchar, D. K. McGuire, E. R. Mohler, 3rd, C. S. Moy, M. E. Mussolino, R. W. Neumar, G. Nichol, D. K. Pandey, N. P. Paynter, M. J. Reeves, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, and M. B. Turner. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129:e28–e292, 2014.

    Article  PubMed  Google Scholar 

  41. Gopalakrishnan, V., M. Kim, and G. An. Using an agent-based model to examine the role of dynamic bacterial virulence potential in the pathogenesis of surgical site infection. Adv. Wound Care (New Rochelle) 2:510–526, 2013.

    Article  Google Scholar 

  42. Hadi, M. F., E. A. Sander, and V. H. Barocas. Multiscale model predicts tissue-level failure from collagen fiber-level damage. J. Biomech. Eng. 134:091005, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hadi, M. F., E. A. Sander, J. W. Ruberti, and V. H. Barocas. Simulated remodeling of loaded collagen networks via strain-dependent enzymatic degradation and constant-rate fiber growth. Mech. Mater. 44:72–82, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hajnal, J., and D. Hawkes. Medical Image Registration. Boca Raton: CRC Press, 2001.

    Book  Google Scholar 

  45. Hammill, C. W., L. W. Clements, J. D. Stefansic, R. F. Wolf, P. D. Hansen, and D. A. Gerber. Evaluation of a minimally invasive image-guided surgery system for hepatic ablation procedures. Surg. Innov. 21:419–426, 2014.

    Article  PubMed  Google Scholar 

  46. Hansen, J., and R. Iyengar. Computation as the mechanistic bridge between precision medicine and systems therapeutics. Clin. Pharmacol. Ther. 93:117–128, 2013.

    Article  CAS  PubMed  Google Scholar 

  47. Heidenreich, P. A., N. M. Albert, L. A. Allen, D. A. Bluemke, J. Butler, G. C. Fonarow, J. S. Ikonomidis, O. Khavjou, M. A. Konstam, T. M. Maddox, G. Nichol, M. Pham, I. L. Pina, and J. G. Trogdon. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ. Heart Fail. 6:606–619, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Henak, C. R., A. E. Anderson, and J. A. Weiss. Subject-specific analysis of joint contact mechanics: application to the study of osteoarthritis and surgical planning. J. Biomech. Eng. 135:021003, 2013.

    Article  PubMed  Google Scholar 

  49. Hinz, B. The myofibroblast: paradigm for a mechanically active cell. J. Biomech. 43:146–155, 2010.

    Article  PubMed  Google Scholar 

  50. Hunt, C. A., G. E. Ropella, T. Lam, and A. D. Gewitz. Relational grounding facilitates development of scientifically useful multiscale models. Theor. Biol. Med. Model 8:35, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jackson, P. R., J. Juliano, A. Hawkins-Daarud, R. C. Rockne, and K. R. Swanson. Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice. Bull. Math. Biol. 77:846–856, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ji, S., X. Fan, K. Paulsen, D. Roberts, S. K. Mirza, and S. S. Lollis. Patient registration using intraoperative stereovision in image-guided open spinal surgery. IEEE Trans. Biomed. Eng. 62:2177–2186, 2015.

    Article  PubMed  Google Scholar 

  53. Ji, S., X. Fan, K. D. Paulsen, D. W. Roberts, S. K. Mirza, and S. S. Lollis. Intraoperative CT as a registration benchmark for intervertebral motion compensation in image-guided open spinal surgery. Int. J. Comput. Assist. Radiol. Surg. 10(12):2009–2020, 2015.

    Article  PubMed  Google Scholar 

  54. Ji, S., X. Fan, D. W. Roberts, A. Hartov, T. J. Schaewe, D. A. Simon, and K. D. Paulsen. Brain shift compensation via intraoperative imaging and data assimilation. In: CRC Handbook of Imaging in Biological Mechanics, edited by C. Neu, and G. Genin. New York: CRC Press and Taylor & Francis, 2014, pp. 229–240.

    Google Scholar 

  55. Ji, S. B., A. Hartov, D. Roberts, and K. Paulsen. Data assimilation using a gradient descent method for estimation of intraoperative brain deformation. Med. Image Anal. 13:744–756, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jones, R. H., E. Velazquez, R. E. Michler, G. Sopko, J. K. Oh, C. M. O’Connor, J. A. Hill, L. Menicanti, Z. Sadowski, P. Desvigne-Nickens, J. L. Rouleau, K. L. Lee, and STICH Hypothesis 2 Investigators. Coronary bypass surgery with or without surgical ventricular reconstruction. N. Engl. J. Med. 360:1705–1717, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, Y., and D. Kim. A fully automatic vertebra segmentation method using 3D deformable fences. Comput. Med. Imaging Graph. 33:343–352, 2009.

    Article  PubMed  Google Scholar 

  58. Kim, C., A. P. O’Rourke, J. A. Will, D. M. Mahvi, and J. G. Webster. Finite-element analysis of hepatic cryoablation around a large blood vessel. IEEE Trans. Biomed. Eng. 55:2087–2093, 2008.

    Article  PubMed  Google Scholar 

  59. Klinder, T., J. Ostermann, M. Ehm, A. Franz, R. Kneser, and C. Lorenz. Automated model-based vertebra detection, identification, and segmentation in CT images. Med. Image Anal. 13:471–482, 2009.

    Article  PubMed  Google Scholar 

  60. Lalys, F., and P. Jannin. Surgical process modelling: a review. Int. J. Comput. Assist. Radiol. Surg. 9:495–511, 2014.

    Article  PubMed  Google Scholar 

  61. Lang, A., P. Mousavi, S. Gill, G. Fichtinger, and P. Abolmaesumi. Multi-modal registration of speckle-tracked freehand 3D ultrasound to CT in the lumbar spine. Med. Image Anal. 16:675–686, 2012.

    Article  PubMed  Google Scholar 

  62. Lee, L. C. W. S., D. Klepach, L. Ge, Z. Zhang, R. J. Lee, A. Hinson, J. H. Gorman, 3rd, R. C. Gorman, and J. M. Guccione. Algisyl-LVR™ with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int. J. Cardiol. 168:2022–2028, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lee, L. C., J. F. Wenk, L. Zhong, D. Klepach, Z. Zhang, L. Ge, M. B. Ratcliffe, T. I. Zohdi, E. Hsu, J. L. Navia, G. S. Kassab, and J. M. Guccione. Analysis of patient-specific surgical ventricular restoration: importance of an ellipsoidal left ventricular geometry for diastolic and systolic function. J. Appl. Physiol. 115(136–144):2013, 1985.

    Google Scholar 

  64. Lee, L. C. G. L., Z. Zhang, M. Pease, S. D. Nikolic, R. Mishra, M. B. Ratcliffe, and J. M. Guccione. Patient-specific finite element modeling of the Cardiokinetix Parachute(®) device: effects on left ventricular wall stress and function. Med. Biol. Eng. Comput. 52:557–566, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li, X., A. K. Upadhyay, A. J. Bullock, T. Dicolandrea, J. Xu, R. L. Binder, M. K. Robinson, D. R. Finlay, K. J. Mills, C. C. Bascom, C. K. Kelling, R. J. Isfort, J. W. Haycock, S. MacNeil, and R. H. Smallwood. Skin stem cell hypotheses and long term clone survival–explored using agent-based modelling. Sci. Rep. 3:1904, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, N. Y. K., K. Verdolini, G. Clermont, Q. Mi, P. A. Hebda, and Y. Vodovotz. A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS One 3:e2789, 2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Li, N. Y. K., Y. Vodovotz, P. A. Hebda, and K. Verdolini. Biosimulation of inflammation and healing in surgically injured vocal folds. Ann. Otol. Rhinol. Laryngol. 119:412–423, 2010.

    PubMed  PubMed Central  Google Scholar 

  68. Li, N. Y., Y. Vodovotz, K. H. Kim, Q. Mi, P. A. Hebda, and K. Verdolini Abbott. Biosimulation of acute phonotrauma: an extended model. Laryngoscope 121:2418–2428, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lindblad, W. J. Considerations for selecting the correct animal model for dermal wound-healing studies. J. Biomater. Sci. Polym. Ed. 19:1087–1096, 2008.

    Article  CAS  PubMed  Google Scholar 

  70. Ma, J., L. Lu, Y. Q. Zhan, X. A. Zhou, M. Salganicoff, and A. Krishnan. Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Med. Image Comput. Comput. Assist. Interv. 13(Pt 1):19–27, 2010.

    PubMed  Google Scholar 

  71. Macal C. M. and M. J. North. Tutorial on agent-based modeling and simulation. In: Proc. 37th Conf. Winter Simul. Winter Simulation Conference, pp. 2–15, 2005.

  72. Maier-Hein, L., P. Mountney, A. Bartoli, H. Elhawary, D. Elson, A. Groch, A. Kolb, M. Rodrigues, J. Sorger, S. Speidel, and D. Stoyanov. Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery. Med. Image Anal. 17:974–996, 2013.

    Article  CAS  PubMed  Google Scholar 

  73. Martin, P. Wound healing–aiming for perfect skin regeneration. Science 276:75–81, 1997.

    Article  CAS  PubMed  Google Scholar 

  74. McDougall, S., J. Dallon, J. Sherratt, and P. Maini. Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos. Trans. A 364:1385–1405, 2006.

    Article  CAS  Google Scholar 

  75. Mi, Q., N. Y. K. Li, C. Ziraldo, A. Ghuma, M. Mikheev, R. Squires, D. O. Okonkwo, K. Verdolini Abbott, G. Constantine, G. An, and Y. Vodovotz. Translational systems biology of inflammation: Potential applications to personalized medicine. Per. Med. 7:549–559, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mi, Q., B. Rivière, G. Clermont, D. L. Steed, and Y. Vodovotz. Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-β1. Wound Rep. Reg. 15:617–682, 2007.

    Article  Google Scholar 

  77. Miga, M. I. Computational modeling for enhancing soft tissue image guided surgery: an application in neurosurgery. Ann. Biomed. Eng. 44(1):128–138, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Misic, A. M., S. E. Gardner, and E. A. Grice. The Wound Microbiome: modern approaches to examining the role of microorganisms in impaired chronic wound healing. Adv. Wound Care (New Rochelle) 3:502–510, 2014.

    Article  Google Scholar 

  79. Muratore, D., J. Russ, B. Dawant, and R. J. Galloway. Three-dimensional image registration of phantom vertebrae for image-guided surgery: a preliminary study. Comput. Aided Surg. 7:342–352, 2002.

    Article  PubMed  Google Scholar 

  80. Najjar, P. A., and D. S. Smink. Prophylactic antibiotics and prevention of surgical site infections. Surg. Clin. North Am. 95:269–283, 2015.

    Article  PubMed  Google Scholar 

  81. National Research Council (U.S.). Committee on A Framework for Developing a New Taxonomy of Disease. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. Washington, DC: National Academies Press, p. xiii, 2011.

    Google Scholar 

  82. Newman, S. A., S. Christley, T. Glimm, H. G. Hentschel, B. Kazmierczak, Y. T. Zhang, J. Zhu, and M. Alber. Multiscale models for vertebrate limb development. Curr. Top. Dev. Biol. 81:311–340, 2008.

    Article  PubMed  Google Scholar 

  83. Padoy, N., T. Blum, S. A. Ahmadi, H. Feussner, M. O. Berger, and N. Navab. Statistical modeling and recognition of surgical workflow. Med. Image Anal. 16:632–641, 2012.

    Article  PubMed  Google Scholar 

  84. Peters, T. M., and K. Cleary. Image-Guided Interventions: Technology and Applications. New York: Springer, 2008.

    Book  Google Scholar 

  85. Peterson, T. A., E. Doughty, and M. G. Kann. Towards precision medicine: advances in computational approaches for the analysis of human variants. J. Mol. Biol. 425:4047–4063, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Qutub, A. A., G. F. Mac, E. D. Karagiannis, P. Vempati, and A. S. Popel. Multiscale models of angiogenesis. IEEE Eng. Med. Biol. Mag. 28:14–31, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rasoulian, A., R. Rohling, and P. Abolmaesumi. lumbar spine segmentation using a statistical multi-vertebrae anatomical shape + pose model. IEEE Trans. Med. Imaging 32:890–1900, 2013.

    Article  Google Scholar 

  88. Reinhardt, J. W., D. A. Krakauer, and K. J. Gooch. Complex matrix remodeling and durotaxis can emerge from simple rules for cell-matrix interaction in agent-based models. J. Biomech. Eng. 135:071003, 2013.

    Article  Google Scholar 

  89. Rouillard, A. D., and J. W. Holmes. Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction. Prog. Biophys. Mol. Biol. 115:235–243, 2014.

    Article  PubMed  Google Scholar 

  90. Rucker, D. C., Y. Wu, L. W. Clements, J. E. Ondrake, T. S. Pheiffer, A. L. Simpson, W. R. Jarnagin, and M. I. Miga. A mechanics-based nonrigid registration method for liver surgery using sparse intraoperative data. IEEE Trans. Med. Imaging 33:147–158, 2014.

    Article  PubMed  Google Scholar 

  91. Sander, E., A. Stein, M. Swickrath, and V. Barocas. Out of many, one: modeling schemes for biopolymer and biofibril networks. Trends in Computational Nanomechanics, Berlin: Springer, 2010, pp. 557–602.

    Chapter  Google Scholar 

  92. Sander, E. A., T. Stylianopoulos, R. T. Tranquillo, and V. H. Barocas. Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc. Natl. Acad. Sci. USA 106:17675–17680, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sanga, S., H. B. Frieboes, X. Zheng, R. Gatenby, E. L. Bearer, and V. Cristini. Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth. Neuroimage 37(Suppl 1):S120–S134, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Scheff, J. D., P. D. Mavroudis, P. T. Foteinou, G. An, S. E. Calvano, J. Doyle, T. E. Dick, S. F. Lowry, Y. Vodovotz, and I. P. Androulakis. A multiscale modeling approach to inflammation: a case study in human endotoxemia. Shock 244:279–289, 2013.

    Google Scholar 

  95. Schluter, D. K., I. Ramis-Conde, and M. A. Chaplain. Computational modeling of single-cell migration: the leading role of extracellular matrix fibers. Biophys. J. 103:1141–1151, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Simpson, A. L., D. A. Geller, A. W. Hemming, W. R. Jarnagin, L. W. Clements, M. I. D’Angelica, P. Dumpuri, M. Goenen, I. Zendejas, M. I. Miga, and J. D. Stefansic. Liver planning software accurately predicts postoperative liver volume and measures early regeneration. J. Am. Coll. Surg. 219:199–207, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Solovyev, A., Q. Mi, Y.-T. Tzen, D. Brienza, and Y. Vodovotz. Hybrid equation-/agent-based model of ischemia-induced hyperemia and pressure ulcer formation predicts greater propensity to ulcerate in subjects with spinal cord injury. PLoS Comput. Biol. 9:e1003070, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stern, J. R., S. Christley, O. Zaborina, J. C. Alverdy, and G. An. Integration of TGF-beta- and EGFR-based signaling pathways using an agent-based model of epithelial restitution. Wound Repair Regen. 20:862–863, 2012.

    Article  PubMed  Google Scholar 

  99. Stern, J. R., A. D. Olivas, V. Valuckaite, O. Zaborina, J. C. Alverdy, and G. An. Agent-based model of epithelial host-pathogen interactions in anastomotic leak. J. Surg. Res. 184:730–738, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Stoverud, K. H., M. Darcis, R. Helmig, and S. M. Hassanizadeh. Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp. Porous Media 92:119–143, 2012.

    Article  CAS  Google Scholar 

  101. Stylianopoulos, T., and V. H. Barocas. Volume-averaging theory for the study of the mechanics of collagen networks. Comput. Methods Appl. Mech. Eng. 196:2981–2990, 2007.

    Article  Google Scholar 

  102. Sullivan, T. P., W. H. Eaglstein, S. C. Davis, and P. Mertz. The pig as a model for human wound healing. Wound Repair Regen. 9:66–76, 2001.

    Article  CAS  PubMed  Google Scholar 

  103. Sun, T., S. Adra, R. Smallwood, M. Holcombe, and S. MacNeil. Exploring hypotheses of the actions of TGF-beta1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis. PLoS One 4:e8515, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Sun, K., T. S. Pheiffer, A. L. Simpson, J. A. Weis, R. C. Thompson, and M. I. Miga. near real-time computer assisted surgery for brain shift correction using biomechanical models. IEEE J. Transl. Eng. Health Med. 2:1–13, 2014.

    Article  Google Scholar 

  105. Tang, D., C. Yang, J. Zheng, G. Canton, R. Bach, T. Hatsukami, L. Wang, K. Billiar, D. Yang, and C. Yuan. Image-based modeling and precision medicine: patient-specific carotid and coronary plaque assessment and predictions. IEEE Trans. Biomed. Eng. 60(3):643–651, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Taylor, G. D., T. A. Kirkland, M. M. McKenzie, B. Sutherland, and R. M. Wiens. The effect of surgical wound infection on postoperative hospital stay. Can. J. Surg. 38:149–153, 1995.

    CAS  PubMed  Google Scholar 

  107. Tranquillo, R. T., and J. D. Murray. Continuum model of fibroblast-driven wound contraction: inflammation-mediation. J. Theor. Biol. 158:135–172, 1992.

    Article  CAS  PubMed  Google Scholar 

  108. Underwood, C. J., L. T. Edgar, J. B. Hoying, and J. A. Weiss. Cell-generated traction forces and the resulting matrix deformation modulate microvascular alignment and growth during angiogenesis. Am. J. Physiol. Heart Circ. Physiol. 307:H152–H164, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vermolen, F. J., and A. Gefen. Wound healing: multi-scale modeling. Multiscale Computer Modeling in Biomechanics and Biomedical Engineering, Berlin: Springer, 2013, pp. 321–345.

    Chapter  Google Scholar 

  110. Vodovotz, Y., and G. An. Systems biology and inflammation. In: Systems Biology in Drug Discovery and Development: Methods and Protocols, edited by Q. Yan. Totowa, NJ: Springer, 2009, pp. 181–201.

    Google Scholar 

  111. Vodovotz, Y., and G. An. Complex Systems and Computational Biology Approaches to Acute Inflammation. New York: Springer, 2013.

    Book  Google Scholar 

  112. Vodovotz, Y., G. Clermont, C. Chow, and G. An. Mathematical models of the acute inflammatory response. Curr. Opin. Crit. Care 10:383–390, 2004.

    Article  PubMed  Google Scholar 

  113. Vodovotz, Y., M. Csete, J. Bartels, S. Chang, and G. An. Translational systems biology of inflammation. PLoS. Comput. Biol. 4:1–6, 2008.

    Article  CAS  Google Scholar 

  114. Walker, D. C., N. T. Georgopoulos, and J. Southgate. From pathway to population—a multiscale model of juxtacrine EGFR-MAPK signalling. BMC Syst. Biol. 2:102, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Walker, D. C., G. Hill, S. M. Wood, R. H. Smallwood, and J. Southgate. Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Trans. Nanobiosci. 3:153–163, 2004.

    Article  CAS  Google Scholar 

  116. Wall, S. T. W. J., K. E. Healy, M. B. Ratcliffe, and J. M. Guccione. Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation 114:2627–2635, 2006.

    Article  PubMed  Google Scholar 

  117. Waugh, H. V., and J. A. Sherratt. Macrophage dynamics in diabetic wound dealing. Bull. Math. Biol. 68:197–207, 2006.

    Article  CAS  PubMed  Google Scholar 

  118. Waugh, H. V., and J. A. Sherratt. Modeling the effects of treating diabetic wounds with engineered skin substitutes. Wound. Repair Regen. 15:556–565, 2007.

    Article  PubMed  Google Scholar 

  119. Wearing, H. J., and J. A. Sherratt. Keratinocyte growth factor signalling: a mathematical model of dermal-epidermal interaction in epidermal wound healing. Math. Biosci. 165:41–62, 2000.

    Article  CAS  PubMed  Google Scholar 

  120. Weston, A. D., and L. Hood. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res. 3:179–196, 2004.

    Article  CAS  PubMed  Google Scholar 

  121. Witte, M. B., and A. Barbul. General principles of wound healing. Surg. Clin. North Am. 77:509–528, 1997.

    Article  CAS  PubMed  Google Scholar 

  122. Xu, Z., O. Kim, M. Kamocka, E. D. Rosen, and M. Alber. Multiscale models of thrombogenesis. Wiley Interdiscip. Rev. Syst. Biol. Med. 4:237–246, 2012.

    Article  CAS  PubMed  Google Scholar 

  123. Yankeelov, T. E., N. Atuegwu, D. Hormuth, J. A. Weis, S. L. Barnes, M. I. Miga, E. C. Rericha, and V. Quaranta. Clinically relevant modeling of tumor growth and treatment response. Sci. Transl. Med. 5:187ps9, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Zhao, G., M. L. Usui, S. I. Lippman, G. A. James, P. S. Stewart, P. Fleckman, and J. E. Olerud. Biofilms and inflammation in chronic wounds. Adv. Wound Care (New Rochelle) 2:389–399, 2013.

    Article  Google Scholar 

  125. Ziraldo, C., A. Solovyev, A. Allegretti, S. Krishnan, M. K. Henzel, G. A. Sowa, D. Brienza, G. An, Q. Mi, and Y. Vodovotz. A computational, tissue-realistic model of pressure ulcer formation in individuals with spinal cord injury. PLoS Comput. Biol. 11:e1004309, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

YV would like to acknowledge funding by the National Institutes of Health (Grants P50-GM-5378, UO1-DK-072146, RO1-GM-107231-01A1); Department of Defense (Grants W911QY-14-1-0003 and W81XWH-14-DMRDP-CRMRP-RTRA); National Institute on Disability Rehabilitation Research Grant H133E070024; and a Shared University Research Award from IBM, Inc. GA would like to acknowledge funding by the National Institutes of Health (Grants RO1-GM-115839-01 and P30-DK-42086). GK and JG would like to acknowledge funding by the National Institutes of Health (Grants R01-HL-118627, U01-HL-119578). JG would also like to acknowledge funding by the National Institutes of Health (Grant R01-HL-077921). ES would like to acknowledge funding from the National Science Foundation (Grant CAREER CMMI 1452728). MIM would like to acknowledge funding by the National Institutes of Health (Grants R01-NS-049251, R21-NS-087796, and R01-CA-162477). SJ would like to acknowledge funding by the National Institutes of Health (Grants R01-NS-092853 and R21-NS-078607), and the Dartmouth Clinical and Translational Science Institute under Award KL2-TR-001088 from the National Center for Advancing Translational Sciences of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Vodovotz.

Additional information

Associate Editor Thomas Yankeelov oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassab, G.S., An, G., Sander, E.A. et al. Augmenting Surgery via Multi-scale Modeling and Translational Systems Biology in the Era of Precision Medicine: A Multidisciplinary Perspective. Ann Biomed Eng 44, 2611–2625 (2016). https://doi.org/10.1007/s10439-016-1596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1596-4

Keywords

Navigation